Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
Discrimination in ML
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Short description of portfolio item number 1
Short description of portfolio item number 2
ereshte Khani, Mohammad Javad Hosseini, Ahmad Ali Abin, Hamid Beigy. ACM Symposium on Applied Computing (ACM-SAC), 2013
The presence of spurious features interferes with the goal of obtaining robust models that perform well across many groups within the population. A natural remedy is to remove spurious features from the model. However, in this work we show that removal of spurious features can decrease accuracy due to the inductive biases of overparameterized models. We completely characterize how the removal of spurious features affects accuracy across different groups (more generally, test distributions) in noiseless overparameterized linear regression. In addition, we show that removal of spurious feature can decrease the accuracy even in balanced datasets – each target co-occurs equally with each spurious feature; and it can inadvertently make the model more susceptible to other spurious features. Finally, we show that robust self-training can remove spurious features without affecting the overall accuracy. Experiments on the Toxic-Comment-Detectoin and CelebA datasets show that our results hold in non-linear models.
Download here
Fereshte Khani, Martin Rinard, Percy Liang. Association for Computational Linguistics (ACL), 2016
Can we train a system that, on any new input, either says “don’t know” or makes a prediction that is guaranteed to be correct? We answer the question in the affirmative provided our model family is well-specified. Specifically, we introduce the unanimity principle: only predict when all models consistent with the training data predict the same output. We operationalize this principle for semantic parsing, the task of mapping utterances to logical forms. We develop a simple, efficient method that reasons over the infinite set of all consistent models by only checking two of the models. We prove that our method obtains 100% precision even with a modest amount of training data from a possibly adversarial distribution. Empirically, we demonstrate the effectiveness of our approach on the standard GeoQuery dataset.
Download here
Fereshte Khani, Noah D. Goodman, Percy Liang. Transactions of the Association for Computational Linguistics (TACL), 2018
We study sequential language games in which two players, each with private information, communicate to achieve a common goal. In such games, a successful player must (i) infer the partner’s private information from the partner’s messages, (ii) generate messages that are most likely to help with the goal, and (iii) reason pragmatically about the partner’s strategy. We propose a model that captures all three characteristics and demonstrate their importance in capturing human behavior on a new goal-oriented dataset we collected using crowdsourcing.
Download here
Fereshte Khani, Percy Liang, International Conference in Machine Learning (ICML), 2020
The performance of standard learning procedures has been observed to differ widely across groups. Recent studies usually attribute this loss discrepancy to an information deficiency for one group (e.g., one group has less data). In this work, we point to a more subtle source of loss discrepancy—feature noise. Our main result is that even when there is no information deficiency specific to one group (e.g., both groups have infinite data), adding the same amount of feature noise to all individuals leads to loss discrepancy. For linear regression, we thoroughly characterize the effect of feature noise on loss discrepancy in terms of the amount of noise, the difference between moments of the two groups, and whether group information is used or not. We then show this loss discrepancy does not vanish immediately if a shift in distribution causes the groups to have similar moments. On three real-world datasets, we show feature noise increases the loss discrepancy if groups have different distributions, while it does not affect the loss discrepancy on datasets where groups have similar distributions.
Download here
Sang Michael Xie, Ananya Kumar, Robbie Jones, Fereshte Khani, Tengyu Ma, Percy Liang, International Conference on Learning Representations (ICLR), 2021
Consider a prediction setting with few in-distribution labeled examples and many unlabeled examples both in- and out-of-distribution (OOD). The goal is to learn a model which performs well both in-distribution and OOD. In these settings, auxiliary information is often cheaply available for every input. How should we best leverage this auxiliary information for the prediction task? Empirically across three image and time-series datasets, and theoretically in a multi-task linear regression setting, we show that (i) using auxiliary information as input features improves in-distribution error but can hurt OOD error; but (ii) using auxiliary information as outputs of auxiliary pre-training tasks improves OOD error. To get the best of both worlds, we introduce In-N-Out, which first trains a model with auxiliary inputs and uses it to pseudolabel all the in-distribution inputs, then pre-trains a model on OOD auxiliary outputs and fine-tunes this model with the pseudolabels (self-training). We show both theoretically and empirically that In-N-Out outperforms auxiliary inputs or outputs alone on both in-distribution and OOD error.
Download here
Fereshte Khani, Percy Liang, ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), 2021
The presence of spurious features interferes with the goal of obtaining robust models that perform well across many groups within the population. A natural remedy is to remove spurious features from the model. However, in this work we show that removal of spurious features can decrease accuracy due to the inductive biases of overparameterized models. We completely characterize how the removal of spurious features affects accuracy across different groups (more generally, test distributions) in noiseless overparameterized linear regression. In addition, we show that removal of spurious feature can decrease the accuracy even in balanced datasets – each target co-occurs equally with each spurious feature; and it can inadvertently make the model more susceptible to other spurious features. Finally, we show that robust self-training can remove spurious features without affecting the overall accuracy. Experiments on the Toxic-Comment-Detectoin and CelebA datasets show that our results hold in non-linear models.
Download here
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.