Unanimous Prediction For 100% Precision With Application To Learning Semantic Mappings

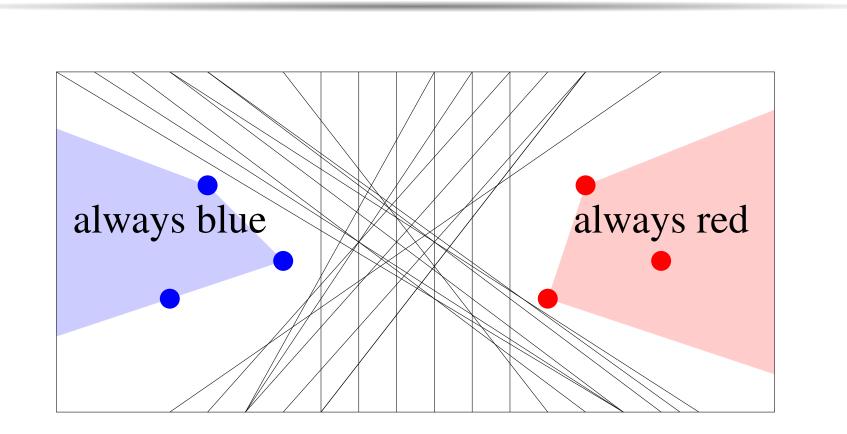
Fereshte Khani, Martin Rinard, Percy Liang

Stanford University

Introduction

If a user asks a system "How many painkillers should I take?", it is much better for the system to say "don't know" rather than making a costly incorrect prediction.

Analogy

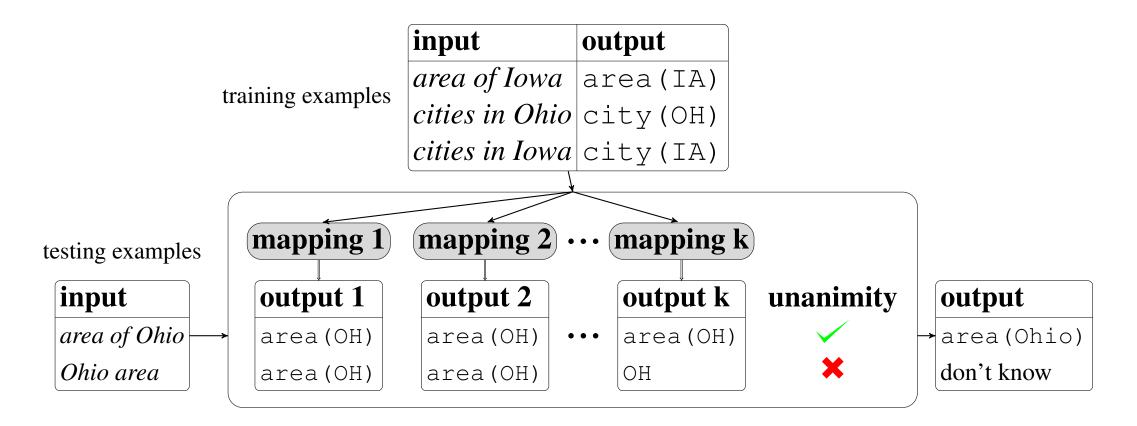


Goal

We present a system which learns a semantic mapping which guarantees 100% precision under its model assumptions.

 $area\ of\ Ohio \rightarrow \{area,\ OH\}$

Unanimity principle

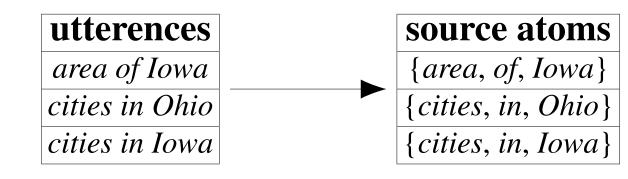


Framework

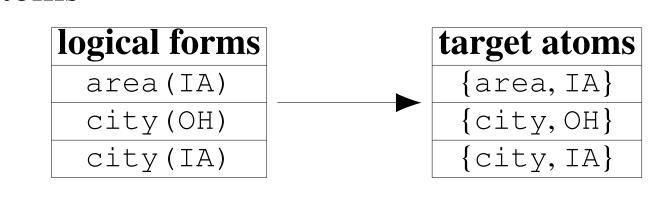
Training set:

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}$$

Source atoms



Target atoms



Framework

Hypothesis space (\mathcal{M}) :

mapping 1	mapping 2		mapping k
$cities \rightarrow \{ city \}$	$cities \rightarrow \{\}$		$cities \rightarrow \{ city, area, IA, OH \}$
$in \rightarrow \{\}$	$in \rightarrow \{\}$		$in \rightarrow \{\}$
$of \rightarrow \{\}$	$of \rightarrow \{\}$	• • •	$of \rightarrow \{\}$
$area \rightarrow \{area\}$	$area \rightarrow \{\}$		$area \rightarrow \{\}$
$lowa \rightarrow \{\mathtt{IA}\}$	$Iowa \rightarrow \{\}$		$Iowa \rightarrow \{\}$
$Ohio ightarrow \{ exttt{OH}\}$	$Ohio \rightarrow \{\}$		$Ohio ightarrow \{ ext{area, area, city, city} \}$

Consistent mappings (C):

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \{ M \in \mathcal{M} \mid \forall i, M(x_i) = y_i \}$$

mapping 1 mapping 2		mapping 3	mapping 4
$cities o \{ city \}$	$cities \rightarrow \{\}$	$cities o \{ \text{city} \}$	$cities \rightarrow \{\}$
$in \rightarrow \{\}$	$ in \rightarrow \{\text{city}\} $	$in \rightarrow \{\}$	$ in \rightarrow \{\text{city}\} $
$of \rightarrow \{\}$	$of \rightarrow \{\}$	$of \rightarrow \{area\}$	$ of \rightarrow \{area\} $
$area \rightarrow \{area\}$	$ area o \{area\} $	$area \rightarrow \{\}$	$area \rightarrow \{\}$
$Iowa \rightarrow \{\mathtt{IA}\}$	$lowa \rightarrow \{\mathtt{IA}\}$	$lowa \rightarrow \{IA\}$	$lowa \rightarrow \{IA\}$
$Ohio \rightarrow \{ \texttt{OH} \}$	$Ohio \rightarrow \{OH\}$	$Ohio \rightarrow \{OH\}$	$Ohio \rightarrow \{OH\}$

Safe set (\mathcal{F}) :

$$\mathcal{F} \stackrel{\mathrm{def}}{=} \{x: |\{M(x): M \in \mathcal{C}\}| = 1\}$$

Now a cities

Ohio area

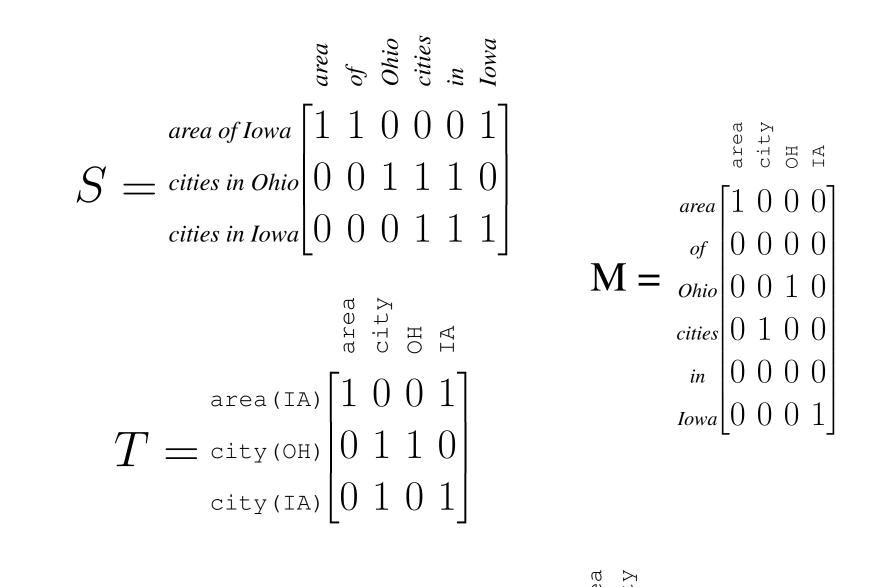
 \mathcal{F}

Now a cities

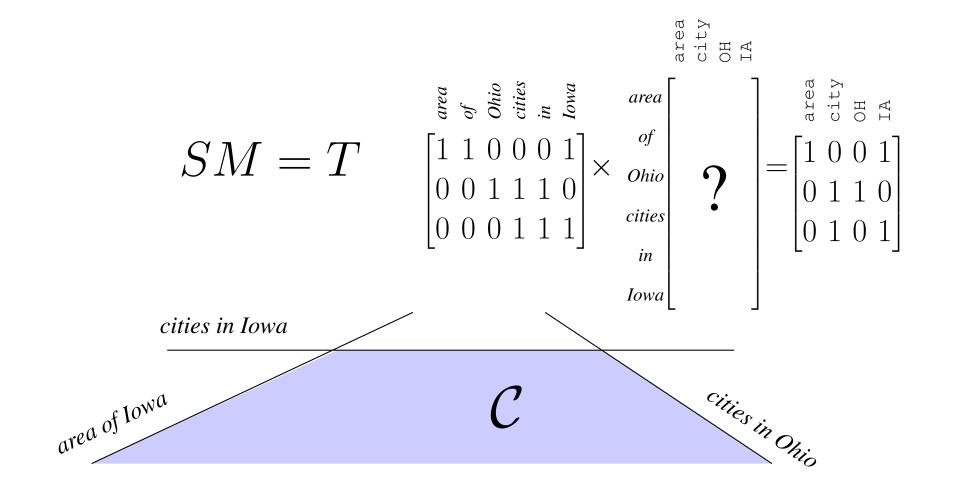
Ohio area of cities in area of Ohio

Texas

Linear algebraic formulation



Linear algebraic formulation



Integer linear programming

$$\mathcal{C} = \{ M \in \mathbb{Z}_{>0}^{n_{\mathsf{s}} \times n_{\mathsf{t}}} : SM = T \}$$

Proposition. Let v be a random vector.

min.
$$xMv$$
 max. xMv s.t. $SM = T$ s.t. $SM = T$ $M \succeq 0$

With probability 1, $x \in \mathcal{F}$ iff both ILPs have same answer.

Computation. Linear at training time, solving two ILPs at test time

Linear programming

$$\mathcal{C}_{\mathbf{LP}} \stackrel{\text{def}}{=} \{ M \in \mathbb{R}^{n_{\mathsf{s}} \times n_{\mathsf{t}}} \mid SM = T \}$$

Proposition. Let M_1 and M_2 be two "random enough" mappings inside \mathcal{C}_{LP} . With probability 1, $x \in \mathcal{F}_{LP}$ iff $xM_1 = xM_2$.

Computation. Solving one LP at training time, linear at test time

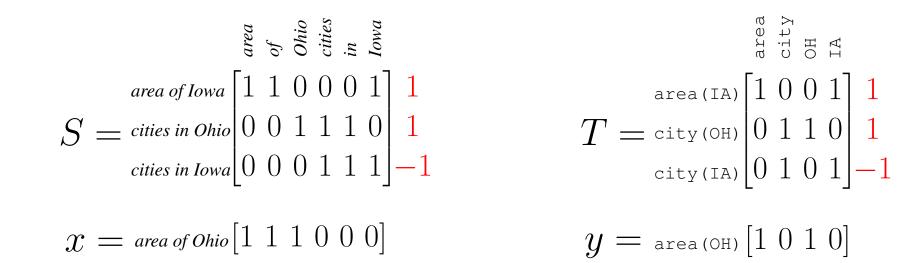
Linear system

$$\mathcal{C}_{\mathsf{LS}} \stackrel{\mathrm{def}}{=} \{ M \in \mathbb{R}^{n_{\mathsf{s}} \times n_{\mathsf{t}}} \mid SM = T \}$$

Proposition. The vector x is in row space of S iff $x \in \mathcal{F}_{LS}$.

A linear combination of training examples:

 $M(area\ of\ Ohio) = M(area\ of\ Iowa) + M(cities\ in\ Ohio) - M(cities\ in\ Iowa)$



Details

- Source atoms: Replace words with *n*-grams to handle polysemy.
- Target atoms: Add ordering information to predicates to reconstruct logical forms.
- Removing noise: Use a relaxed constraint, $||SM T||_1 \le \gamma$, instead of SM = T.

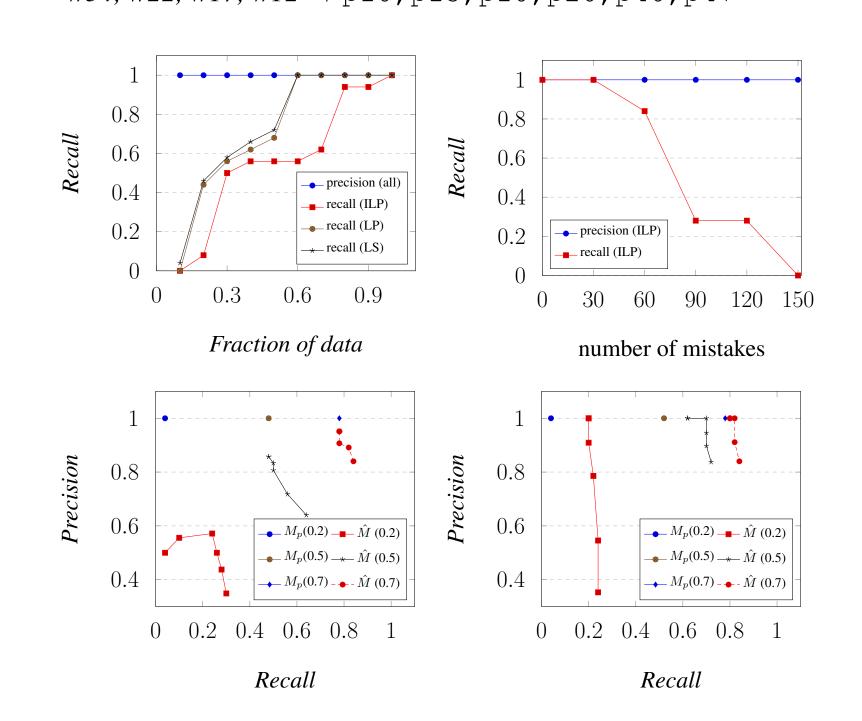
Other applications

- Active learning: Choose linearly independent sentences to be annotated.
- Paraphrasing: Find all sentences that yield the same thing under all consistent semantic mappings.
- Learning from denotations: Training data consists of (question, answer) pairs.

Results

Artificial dataset

Input/output vocabulary size is 70. w34, w22, w17, $w12 \rightarrow p10$, p15, p10, p20, p40, p47



GeoQuery dataset

880 (question, logical form) pairs

 $how\ long\ is\ the\ mississippi
ightarrow$ (answer(len(riverid mississippi)))

