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Introduction

If a user asks a system “How many painkillers
should I take?”, it is much better for the system to
say “don’t know” rather than making a costly incor-
rect prediction.

Analogy

always blue always red

Goal

We present a system which learns a semantic map-
ping which guarantees 100% precision under its
model assumptions.
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Framework

Training set:
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Source atoms
utterences
area of Iowa
cities in Ohio
cities in Iowa

source atoms
{area, of, Iowa}
{cities, in, Ohio}
{cities, in, Iowa}

Target atoms
logical forms
area(IA)
city(OH)
city(IA)

target atoms
{area, IA}
{city, OH}
{city, IA}

Framework

Hypothesis space (M):

mapping 1
cities→ {city}
in→ {}
of→ {}
area→ {area}
Iowa→ {IA}
Ohio→ {OH}

mapping 2
cities→ {}
in→ {}
of→ {}
area→ {}
Iowa→ {}
Ohio→ {}

mapping k
cities→ {city,area,IA,OH}
in→ {}
of→ {}
area→ {}
Iowa→ {}
Ohio→ {area,area,city,city}

...

Consistent mappings (C):

C def= {M ∈M | ∀i,M(xi) = yi}
mapping 1

cities → {city}
in → {}
of → {}
area → {area}
Iowa → {IA}
Ohio → {OH}

mapping 2
cities → {}
in → {city}
of → {}
area → {area}
Iowa → {IA}
Ohio → {OH}

mapping 3
cities → {city}
in → {}
of → {area}
area → {}
Iowa → {IA}
Ohio → {OH}

mapping 4
cities → {}
in → {city}
of → {area}
area → {}
Iowa → {IA}
Ohio → {OH}

Safe set (F):

F def= {x : |{M(x) : M ∈ C}| = 1}
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Linear algebraic formulation
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Linear algebraic formulation

SM = T
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C

Integer linear programming

C = {M ∈ Zns×nt
≥0 : SM = T}

Proposition. Let v be a random vector.
min. xMv

s.t. SM = T

M � 0

max. xMv

s.t. SM = T

M � 0
With probability 1, x ∈ F iff both ILPs have same
answer.
Computation. Linear at training time, solving two
ILPs at test time

Linear programming

CLP
def= {M ∈ Rns×nt

≥0 | SM = T}
Proposition. Let M1 and M2 be two “random
enough” mappings inside CLP. With probability 1,
x ∈ FLP iff xM1 = xM2.
Computation. Solving one LP at training time,
linear at test time

Linear system

CLS
def= {M ∈ Rns×nt | SM = T}

Proposition. The vector x is in row space of S iff
x ∈ FLS.
A linear combination of training examples:

M(area of Ohio) = M(area of Iowa) + M(cities in Ohio) - M(cities in Iowa)
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area of Iowa 1 1 0 0 0 1 1
cities in Ohio 0 0 1 1 1 0 1
cities in Iowa 0 0 0 1 1 1 −1
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Details

• Source atoms: Replace words with n-grams to
handle polysemy.

• Target atoms: Add ordering information to
predicates to reconstruct logical forms.

• Removing noise: Use a relaxed constraint,
‖SM − T‖1 ≤ γ, instead of SM = T .

Other applications

• Active learning: Choose linearly independent
sentences to be annotated.

• Paraphrasing: Find all sentences that yield the
same thing under all consistent semantic
mappings.

• Learning from denotations: Training data
consists of (question, answer) pairs.

Results

Artificial dataset
Input/output vocabulary size is 70.
w34, w22, w17, w12→ p10,p15,p10,p20,p40,p47
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GeoQuery dataset
880 (question, logical form) pairs
how long is the mississippi→ (answer(len(riverid mississippi)))
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