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N.B.

This review assumes basic background in probability (events,
sample space, probability axioms etc.) and focuses on concepts
useful to CS229 and to machine learning in general.



Conditional Probability and Bayes’ Rule

For any events A,B such that P(B) 6= 0, we define:

P(A | B) :=
P(A ∩ B)

P(B)

Let’s apply conditional probability to obtain Bayes’ Rule!

P(B | A) =
P(B ∩ A)

P(A)
=

P(A ∩ B)

P(A)

=
P(B)P(A | B)

P(A)

Conditioned Bayes’ Rule: given events A,B,C ,

P(A | B,C ) =
P(B | A,C )P(A | C )

P(B | C )

See Appendix for proof :)



Law of Total Probability

Let B1, ...,Bn be n disjoint events whose union is the entire sample
space. Then, for any event A,

P(A) =
n∑

i=1

P(A ∩ Bi )

=
n∑

i=1

P(A | Bi )P(Bi )

We can then write Bayes’ Rule as:

P(Bk | A) =
P(Bk)P(A | Bk)

P(A)

=
P(Bk)P(A | Bk)∑n
i=1 P(A | Bi )P(Bi )



Example

Treasure chest A holds 100 gold coins. Treasure chest B holds 60
gold and 40 silver coins.
Choose a treasure chest uniformly at random, and pick a coin from
that chest uniformly at random. If the coin is gold, then what is
the probability that you chose chest A? 1

Solution:

P(A | G ) =
P(A)P(G | A)

P(A)P(G | A) + P(B)P(G | B)

=
0.5× 1

0.5× 1 + 0.5× 0.6

= 0.625

1Question based on slides by Koochak & Irvin



Chain Rule

For any n events A1, ...,An, the joint probability can be expressed
as a product of conditionals:

P(A1 ∩ A2 ∩ ... ∩ An)

= P(A1)P(A2 | A1)P(A3 | A2 ∩ A1)...P(An | An−1 ∩ An−2 ∩ ... ∩ A1)



Independence

Events A,B are independent if

P(AB) = P(A)P(B)

We denote this as A ⊥ B. From this, we know that if A ⊥ B,

P(A | B) =
P(A ∩ B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

Implication: If two events are independent, observing one event
does not change the probability that the other event occurs.
In general: events A1, ...,An are mutually independent if

P(
⋂
i∈S

Ai ) =
∏
i∈S

P(Ai )

for any subset S ⊆ {1, ..., n}.



Random Variables

I A random variable X maps outcomes to real values.

I X takes on values in Val(X ) ⊆ R.

I X = k is the event that random variable X takes on value k.

Discrete RVs:

I Val(X ) is a set

I P(X = k) can be nonzero

Continuous RVs:

I Val(X ) is a range

I P(X = k) = 0 for all k . P(a ≤ X ≤ b) can be nonzero.



Probability Mass Function (PMF)

Given a discrete RV X , a PMF maps values of X to probabilities.

pX (x) := P(X = x)

For a valid PMF,
∑

x∈Val(x) pX (x) = 1.



Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. R→ [0, 1])

FX (x) := P(X ≤ x)

A CDF must fulfill the following:

I limx→−∞ FX (x) = 0

I limx→∞ FX (x) = 1

I If a ≤ b, then FX (a) ≤ FX (b) (i.e. CDF must be
nondecreasing)

Also note: P(a ≤ X ≤ b) = FX (b)− FX (a).



Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

fX (x) :=
dFX (x)

dx

Thus,

P(a ≤ X ≤ b) = FX (b)− FX (a) =

∫ b

a
fX (x)dx

A valid PDF must be such that

I for all real numbers x , fX (x) ≥ 0.

I
∫∞
−∞ fX (x)dx = 1



Expectation

Let g be an arbitrary real-valued function.

I If X is a discrete RV with PMF pX :

E[g(X )] :=
∑

x∈Val(X )

g(x)pX (x)

I If X is a continuous RV with PDF fX :

E[g(X )] :=

∫ ∞
−∞

g(x)fX (x)dx

Intuitively, expectation is a weighted average of the values of
g(x), weighted by the probability of x .



Properties of Expectation

For any constant a ∈ R and arbitrary real function f :

I E[a] = a

I E[af (X )] = aE[f (X )]

Linearity of Expectation
Given n real-valued functions f1(X ), ..., fn(X ),

E[
n∑

i=1

fi (X )] =
n∑

i=1

E[fi (X )]

Law of Total Expectation
Given two RVs X ,Y :

E[E[X | Y ]] = E[X ]

N.B. E[X | Y ] =
∑

x∈Val(x) xpX |Y (x |y) is a function of Y .
See Appendix for details :)



Example of Law of Total Expectation

El Goog sources two batteries, A and B, for its phone. A phone
with battery A runs on average 12 hours on a single charge, but
only 8 hours on average with battery B. El Goog puts battery A in
80% of its phones and battery B in the rest. If you buy a phone
from El Goog, how many hours do you expect it to run on a single
charge?
Solution: Let L be the time your phone runs on a single charge.
We know the following:

I pX (A) = 0.8, pX (B) = 0.2,

I E[L | A] = 12, E[L | B] = 8.

Then, by Law of Total Expectation,

E[L] = E[E[L | X ]] =
∑

X∈{A,B}

E[L | X ]pX (X )

= E[L | A]pX (A) + E[L | B]pX (B)

= 12× 0.8 + 8× 0.2 = 11.2



Variance

The variance of a RV X measures how concentrated the
distribution of X is around its mean.

Var(X ) := E[(X − E[X ])2]

= E[X 2]− E[X ]2

Interpretation: Var(X ) is the expected deviation of X from E[X ].
Properties: For any constant a ∈ R, real-valued function f (X )

I Var [a] = 0

I Var [af (X )] = a2Var [f (X )]



Example Distributions

Distribution PDF or PMF Mean Variance

Bernoulli(p)

{
p, if x = 1
1− p, if x = 0.

p p(1− p)

Binomial(n, p)
(
n
k

)
pk(1− p)n−k for k = 0, 1, ..., n np np(1− p)

Geometric(p) p(1− p)k−1 for k = 1, 2, ... 1
p

1−p
p2

Poisson(λ) e−λλk

k! for k = 0, 1, ... λ λ

Uniform(a, b) 1
b−a for all x ∈ (a, b) a+b

2
(b−a)2

12

Gaussian(µ, σ2) 1
σ
√
2π
e−

(x−µ)2

2σ2 for all x ∈ (−∞,∞) µ σ2

Exponential(λ) λe−λx for all x ≥ 0, λ ≥ 0 1
λ

1
λ2

Read review handout or Sheldon Ross for details 2

2Table reproduced from Maleki & Do’s review handout by Koochak & Irvin



Joint and Marginal Distributions
I Joint PMF for discrete RV’s X ,Y :

pXY (x , y) = P(X = x ,Y = y)

Note that
∑

x∈Val(X )

∑
y∈Val(Y ) pXY (x , y) = 1

I Marginal PMF of X , given joint PMF of X ,Y :

pX (x) =
∑
y

pXY (x , y)

I Joint PDF for continuous X ,Y :

fXY (x , y) =
δ2FXY (x , y)

δxδy

Note that
∫∞
−∞

∫∞
−∞ fXY (x , y)dxdy = 1

I Marginal PDF of X , given joint PDF of X ,Y :

fX (x) =

∫ ∞
−∞

fXY (x , y)dy



Joint and Marginal Distributions for Multiple RVs
I Joint PMF for discrete RV’s X1, ...,Xn:

p(x1, ..., xn) = P(X1 = x1, ...,Xn = xn)

Note that
∑

x1

∑
x2
...
∑

xn
p(x1, ..., xn) = 1

I Marginal PMF of X1, given joint PMF of X1, ...,Xn:

pX1(x1) =
∑
x2

...
∑
xn

p(x1, ..., xn)

I Joint PDF for continuous RV’s X1, ...,Xn:

f (x1, ..., xn) =
δnF (x1, ...xn)

δx1δx2...δxn

Note that
∫
x1

∫
x2
...
∫
xn
f (x1, ..., xn)dx1...dxn = 1

I Marginal PDF of X1, given joint PDF of X1, ...,Xn:

fX1(x1) =

∫
x2

...

∫
xn

f (x1, ..., xn)dx2...dxn



Expectation for multiple random variables

Given two RV’s X ,Y and a function g : R2 → R of X ,Y ,

I for discrete X ,Y :

E[g(X ,Y )] :=
∑

x∈Val(x)

∑
y∈Val(y)

g(x , y)pXY (x , y)

I for continuous X ,Y :

E[g(X ,Y )] :=

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fXY (x , y)dxdy

These definitions can be extended to multiple random variables in
the same way as in the previous slide. For example, for n
continuous RV’s X1, ..,Xn and function g : Rn → R:

E[g(X )] =

∫ ∫
...

∫
g(x1, ..., xn)fX1,...,Xn(x1, ..., xn)dx1, ..., dxn



Covariance

Intuitively: measures how much one RV’s value tends to move
with another RV’s value. For RV’s X ,Y :

Cov [X ,Y ] := E [(X − E[X ])(Y − E[Y ])]

= E[XY ]− E[X ]E[Y ]

I If Cov [X ,Y ] < 0, then X and Y are negatively correlated

I If Cov [X ,Y ] > 0, then X and Y are positively correlated

I If Cov [X ,Y ] = 0, then X and Y are uncorrelated



Properties Involving Covariance

I If X ⊥ Y , then E[XY ] = E[X ]E[Y ]. Thus,

Cov [X ,Y ] = E[XY ]− E[X ]E[Y ] = 0

This is unidirectional! Cov [X ,Y ] = 0 does not imply X ⊥ Y

I Variance of two variables:

Var [X + Y ] = Var [X ] + Var [Y ] + 2Cov [X ,Y ]

i.e. if X ⊥ Y , Var [X + Y ] = Var [X ] + Var [Y ].

I Special Case:

Cov [X ,X ] = E[XX ]− E[X ]E[X ] = Var [X ]



Conditional distributions for RVs

Works the same way with RV ’s as with events:

I For discrete X ,Y :

pY |X (y |x) =
pXY (x , y)

pX (x)

I For continuous X ,Y :

fY |X (y |x) =
fXY (x , y)

fX (x)

I In general, for continuous X1, ...,Xn:

fX1|X2,...,Xn
(x1|x2, ..., xn) =

fX1,X2,...,Xn(x1, x2, ..., xn)

fX2,...,Xn(x2, ..., xn)



Bayes’ Rule for RVs

Also works the same way for RV ’s as with events:

I For discrete X ,Y :

pY |X (y |x) =
pX |Y (x |y)pY (y)∑

y ′∈Val(Y ) pX |Y (x |y ′)pY (y ′)

I For continuous X ,Y :

fY |X (y |x) =
fX |Y (x |y)fY (y)∫∞

−∞ fX |Y (x |y ′)fY (y ′)dy ′



Chain Rule for RVs

Also works the same way as with events:

f (x1, x2, ..., xn) = f (x1)f (x2|x1)...f (xn|x1, x2, ..., xn−1)

= f (x1)
n∏

i=2

f (xi |x1, ..., xi−1)



Independence for RVs

I For X ⊥ Y to hold, it must be that FXY (x , y) = FX (x)FY (y)
FOR ALL VALUES of x , y .

I Since fY |X (y |x) = fY (y) if X ⊥ Y , chain rule for mutually
independent X1, ...,Xn is:

f (x1, ..., xn) = f (x1)f (x2)...f (xn) =
n∏

i=1

f (xi )

(very important assumption for a Naive Bayes classifier!)



Random Vectors

Given n RV’s X1, ...,Xn, we can define a random vector X s.t.

X =


X1

X2
...
Xn


Note: all the notions of joint PDF/CDF will apply to X .

Given g : Rn → Rm, we have:

g(x) =


g1(x)
g2(x)

...
gm(x)

 ,E[g(X )] =


E[g1(X )]
E[g2(X )]

...
E[gm(X )]

 .



Covariance Matrices

For a random vector X ∈ Rn, we define its covariance matrix Σ
as the n × n matrix whose ij-th entry contains the covariance
between Xi and Xj .

Σ =

Cov [X1,X1] . . . Cov [X1,Xn]
...

. . .
...

Cov [Xn,X1] . . . Cov [Xn,Xn]


applying linearity of expectation and the fact that
Cov [Xi ,Xj ] = E[(Xi − E[Xi ])(Xj − E[Xj ])], we obtain

Σ = E[(X − E[X ])(X − E[X ])T ]

Properties:

I Σ is symmetric and PSD

I If Xi ⊥ Xj for all i , j , then Σ = diag(Var [X1], ...,Var [Xn])



Multivariate Gaussian

The multivariate Gaussian X ∼ N (µ,Σ), X ∈ Rn:

p(x ;µ,Σ) =
1

det(Σ)
1
2 (2π)

n
2

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

The univariate Gaussian X ∼ N (µ, σ2), X ∈ R is just the special
case of the multivariate Gaussian when n = 1.

p(x ;µ, σ2) =
1

σ(2π)
1
2

exp

(
− 1

2σ2
(x − µ)2

)
Notice that if Σ ∈ R1×1, then Σ = Var [X1] = σ2, and so

I Σ−1 = 1
σ2

I det(Σ)
1
2 = σ



Some Nice Properties of MV Gaussians

I Marginals and conditionals of a joint Gaussian are Gaussian

I A d-dimensional Gaussian X ∈ N (µ,Σ = diag(σ21, ..., σ
2
n)) is

equivalent to a collection of d independent Gaussians
Xi ∈ N (µi , σ

2
i ). This results in isocontours aligned with the

coordinate axes.

I In general, the isocontours of a MV Gaussian are
n-dimensional ellipsoids with principal axes in the directions of
the eigenvectors of covariance matrix Σ (remember, Σ is
PSD, so all n eigenvectors are non-negative). The axes’
relative lengths depend on the eigenvalues of Σ.



Visualizations of MV Gaussians

Effect of changing variance



Visualizations of MV Gaussians

If Var [X1] 6= Var [X2]:



Visualizations of MV Gaussians

If X1 and X2 are positively correlated:



Visualizations of MV Gaussians

If X1 and X2 are negatively correlated:



Thank you and good luck!

For further reference, consult the following CS229 handouts

I Probability Theory Review

I The MV Gaussian Distribution

I More on Gaussian Distribution

For a comprehensive treatment, see

I Sheldon Ross: A First Course in Probability



Appendix: More on Total Expectation

Why is E[X |Y ] a function of Y ? Consider the following:

I E[X |Y = y ] is a scalar that only depends on y .

I Thus, E[X |Y ] is a random variable that only depends on Y .
Specifically, E[X |Y ] is a function of Y mapping Val(Y ) to
the real numbers.

An example: Consider RV X such that

X = Y 2 + ε

such that ε ∼ N (0, 1) is a standard Gaussian. Then,

I E[X |Y ] = Y 2

I E[X |Y = y ] = y2



Appendix: More on Total Expectation

A derivation of Law of Total Expectation for discrete X ,Y :3

E[E[X |Y ]] = E[
∑
x

xP(X = x | Y )] (1)

=
∑
y

∑
x

xP(X = x | Y )P(Y = y) (2)

=
∑
y

∑
x

xP(X = x ,Y = y) (3)

=
∑
x

x
∑
y

P(X = x ,Y = y) (4)

=
∑
x

xP(X = x) = E[X ] (5)

where (1), (2), and (5) result from the definition of expectation,
(3) results from the definition of cond. prob., and (5) results from
marginalizing out Y .

3from slides by Koochak & Irvin



Appendix: A proof of Conditioned Bayes Rule

Repeatedly applying the definition of conditional probability, we
have: 4

P(b|a, c)P(a|c)

P(b|c)
=

P(b, a, c)

P(a, c)
· P(a|c)

P(b|c)

=
P(b, a, c)

P(a, c)
· P(a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b, c)

= P(a|b, c)

4from slides by Koochak & Irvin


