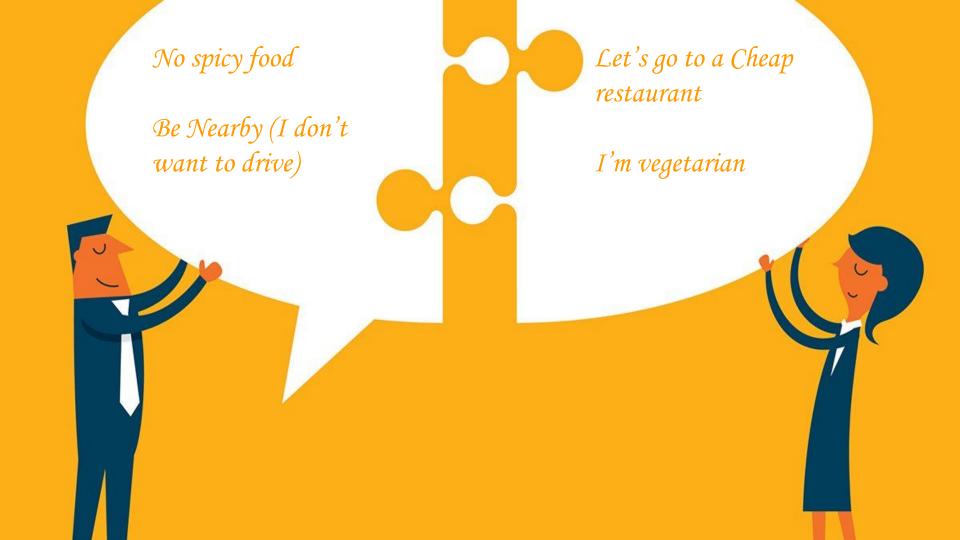
Planning, Inference, and Pragmatics in Sequential Language Games

Fereshte Khani

Noah Goodman

Percy Liang



They figure out the state of the world based on what others say.



Planning

People routinely choose what to say based on their goals.

Pragmatics

They always take into account that others are strategizing agents too.

They figure out the state of the world based on what others say.

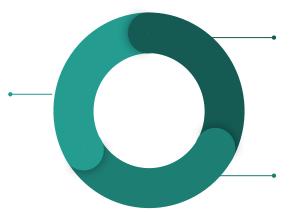
Planning

People routinely choose what to say based on their goals.

Pragmatics

They always take into account that others are strategizing agents too.

They figure out the state of the world based on what others say.



Planning

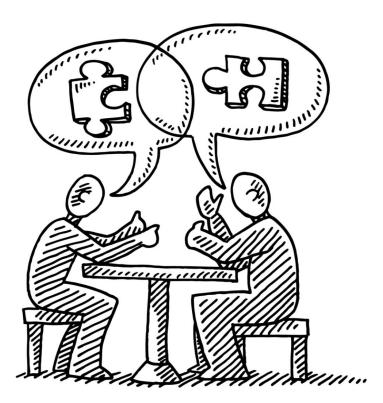
People routinely choose what to say based on their goals.

Pragmatics

They always take into account that others are strategizing agents too.

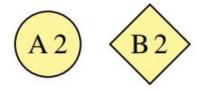
How to have all three in one model?

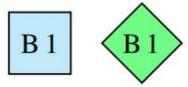
Sequential Language Game: InfoJigsaw

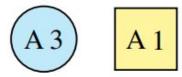


InfoJigsaw

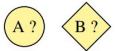
Find A1







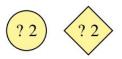
InfoJigsaw

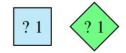


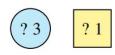


 P_{letter} view

Find A1

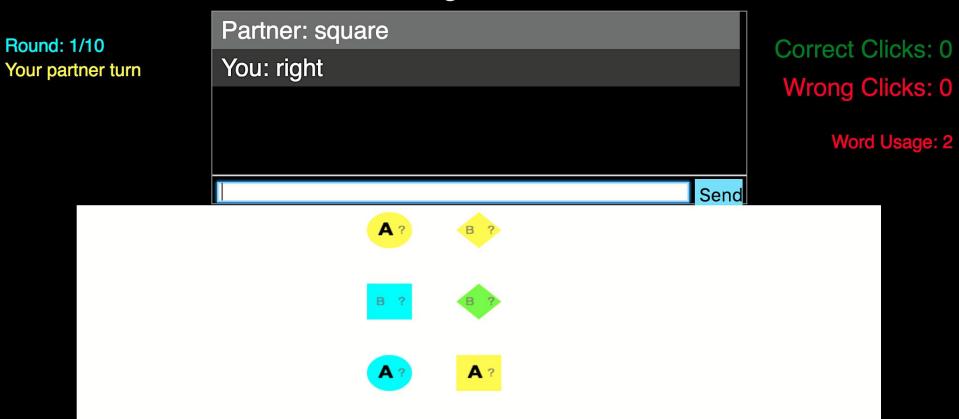






 $P_{\rm digit}$ view

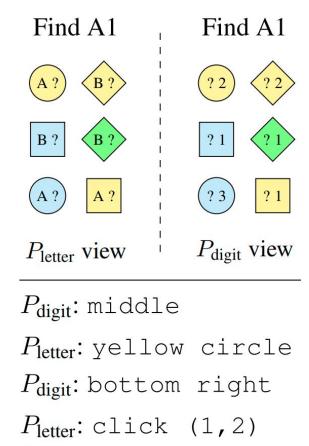
The goal is A 1



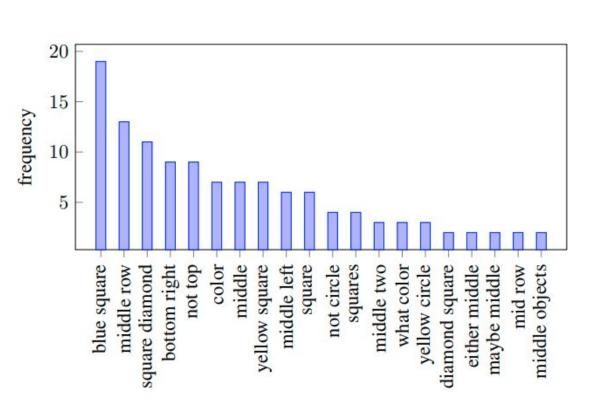
• 10 InfoJigsaw scenarios (either 2*3 or 3*2)

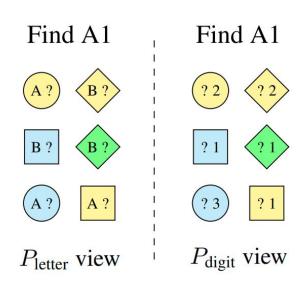
200 pairs played 10 scenarios in random error

InfoJigsaw: Example



InfoJigsaw: Example





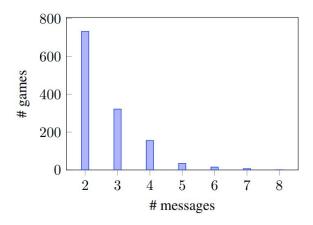
 P_{digit} : middle

 P_{letter} : yellow circle

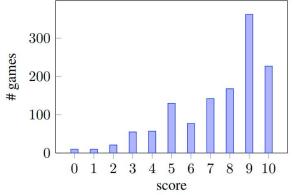
 $P_{\rm digit}$: bottom right

 P_{letter} : click (1,2)

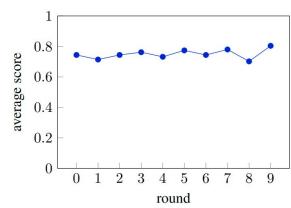
InfoJigsaw statistics



(a) Number of exchanged messages per game.

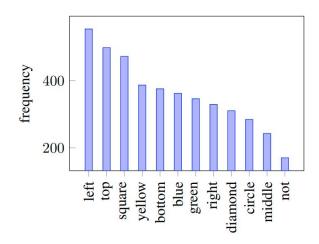


(b) Distribution of final game scores.

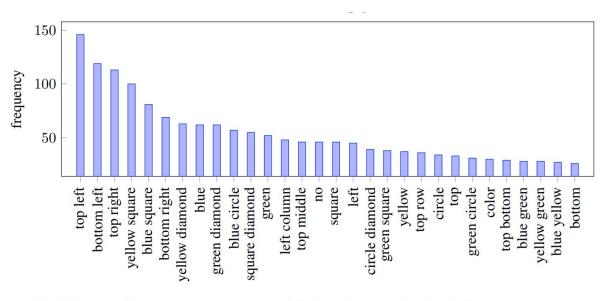


(c) Average score over multiple rounds of game play, which interestingly remains constant.

InfoJigsaw statistics



(d) 12 most frequent words, which make up 73% of all tokens.



(e) 30 most frequent messages, which make up 49% of all messages.

Dataset statistics

1680

Games

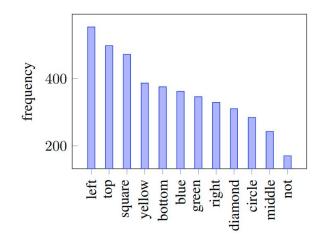
4987

Messages

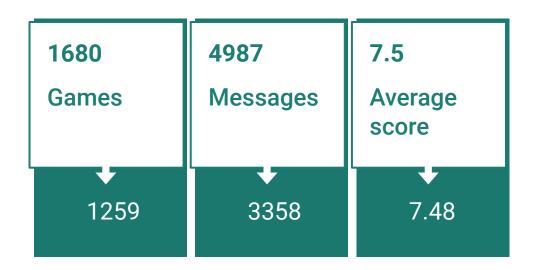
7.5

Average score

Dataset statistics



top - middle - bottom yellow - blue - green square - circle - diamond left - right not - yes - no

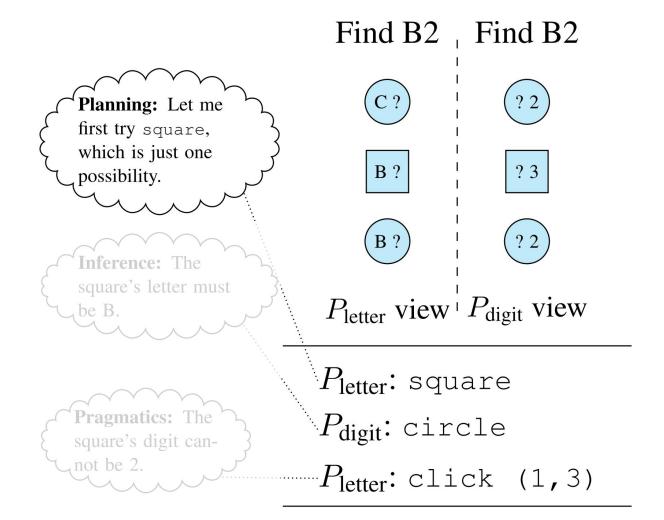


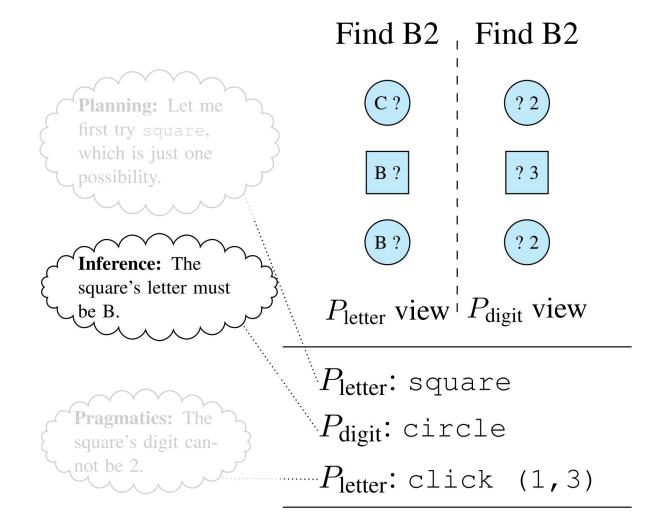
InfoJigsaw

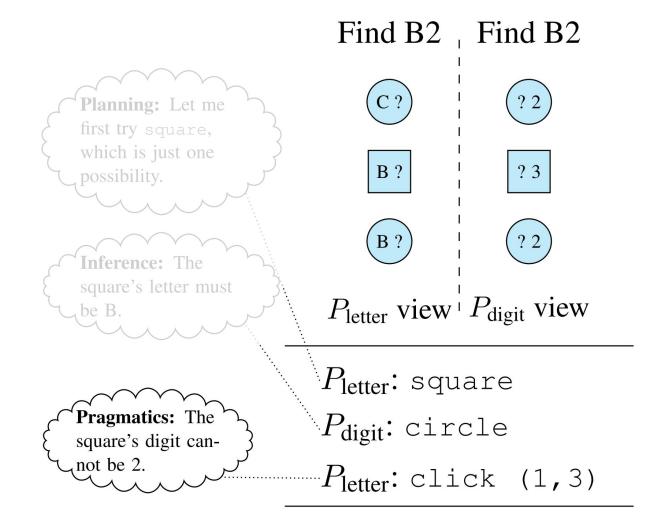
top - middle - bottom yellow - blue - green square - circle - diamond left - right not - yes - no 146
Different messages

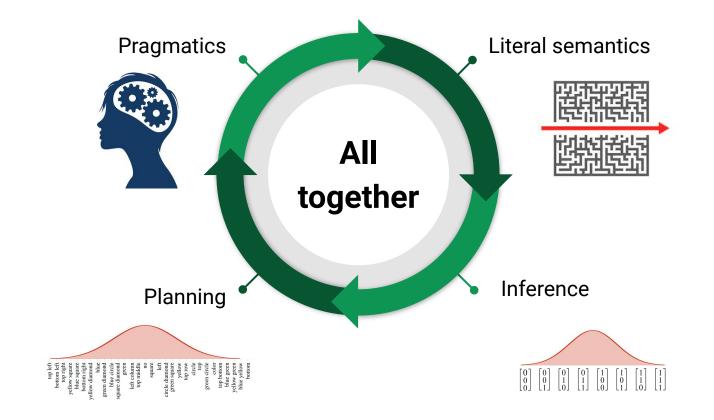
64
Different states

How to have all three in one model?







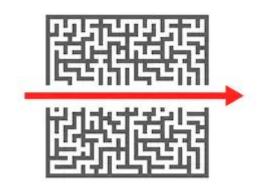


Outline

- Literal semantics
- Inference
- Planning
- Pragmatics
- All three together

Literal Semantics

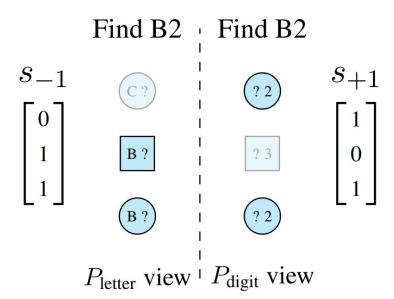
Purpose: A mapping from each word to its literal semantics,



Literal Semantics

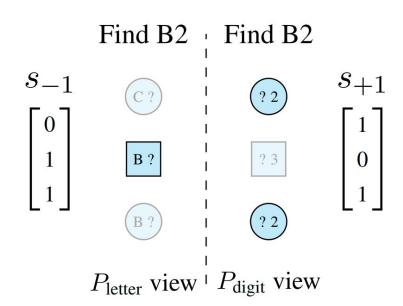
Are any circles goal-consistent? All the circles are goal-consistent. Some circles but no other objects are goal consistent. Circle Most of the circles are goal-consistent. At least one circle is goal-consistent.

Private states



Literal Semantics: informative message

Informative messages describe constraints on the speaker's private state.



Literal Semantics: informative message

$$[square] = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P_{\text{letter view}} P_{\text{digit view}}$$

Literal Semantics: informative message

Literal semantics: action sequence

 P_{digit} : circle

 $P_{\text{letter}}: \text{square} \implies s \in [\![circle]\!], s \notin [\![square]\!]$

 $P_{
m digit}$: no

Literal semantics: action sequence

$$P_{\text{letter}}: \text{square} \quad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$P_{\text{digit}}: \text{no}$$

 P_{digit} : circle

Find B2 Find B2
$$S=1$$

$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} B? \\ \vdots \\ P_{letter} \text{ view} \end{bmatrix}$$

$$\begin{bmatrix} ?2 \\ ?3 \\ \vdots \\ P_{digit} \text{ view} \end{bmatrix}$$

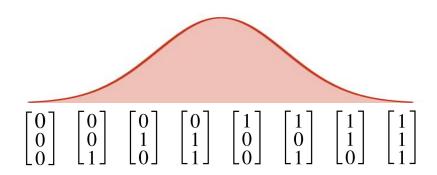
$$\Rightarrow s \in [circle], s \notin [square]$$

Outline

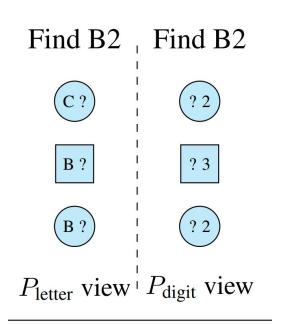


- Inference
- Planning
- Pragmatics
- All three together

Purpose: computing a distribution over the partner's private state



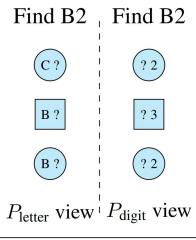
Inference



What is belief of P_{letter} about P_{digit} state?

 $P_{
m letter}$: square $P_{
m digit}$: circle

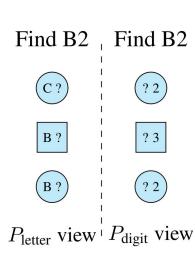
Inference

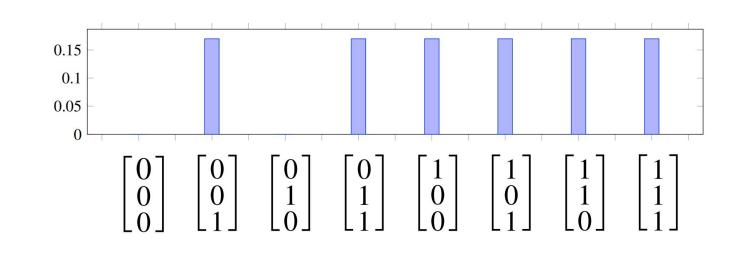


What is belief of P_{letter} about P_{digit} state?

$$P_{ ext{letter view}}$$
 view $P_{ ext{digit}}$ view $P_{ ext{letter}}$: square $P_{ ext{digit}}$: circle $p(s_{-j} \mid s_j, a_{1:t}) \propto egin{cases} 1 & s_{-j} ext{ consistent with } a_{1:t} \ 0 & o.w. \end{cases}$

Inference



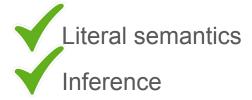


$$P_{\mathrm{letter}}$$
: square

$$P_{
m digit}$$
: circle

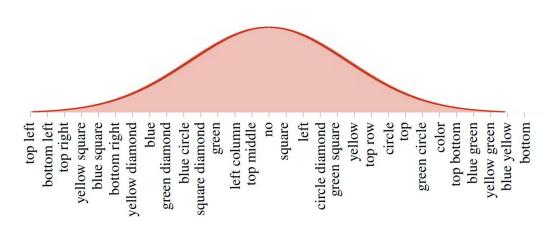
 $p(s_{-j} \mid s_j, a_{1:t}) \propto \begin{cases} 1 & s_{-j} \text{ consistent with } a_{1:t} \\ 0 & o.w. \end{cases}$

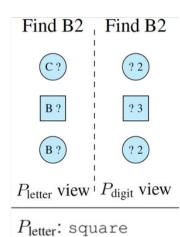
Outline



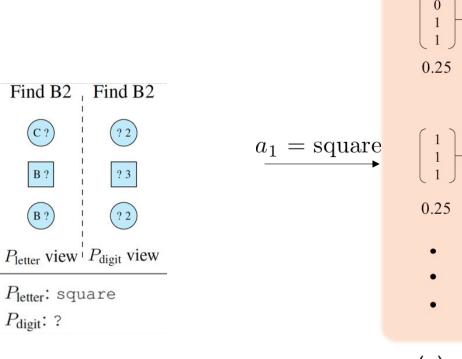
- Planning
- Pragmatics
- All three together

Purpose: computing a policy, which specifies a distribution over a player actions



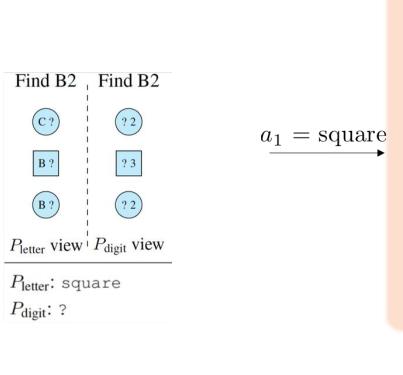


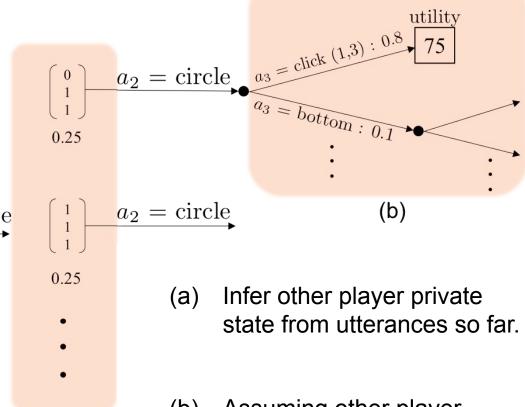
 P_{digit} : ?



(a) Infer other player private state from utterances so far.

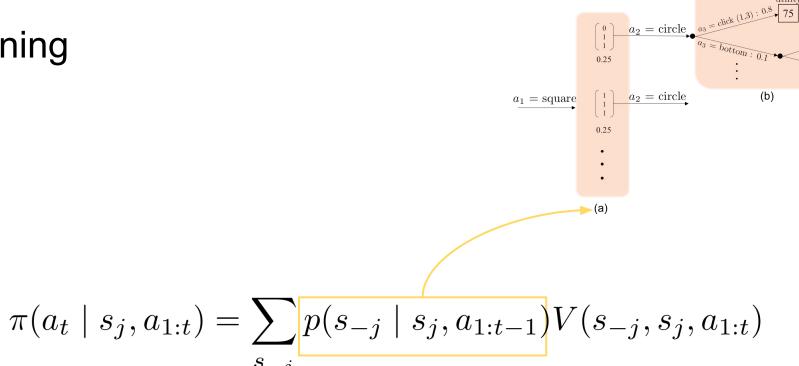
(a)



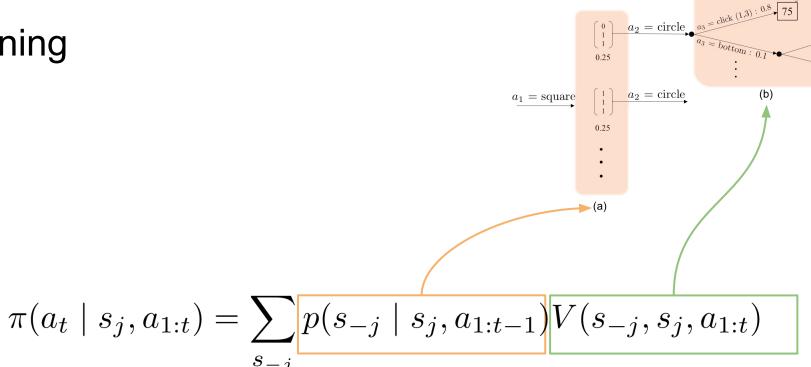


(a)

(b) Assuming other player private state compute utility of saying some utterances.



Inferring other player's private state



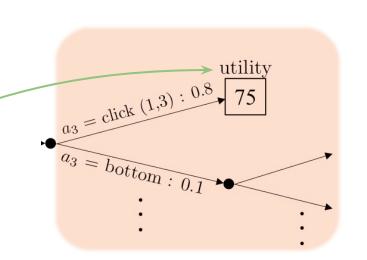
Inferring other player's private state

Utility of the game given states and actions

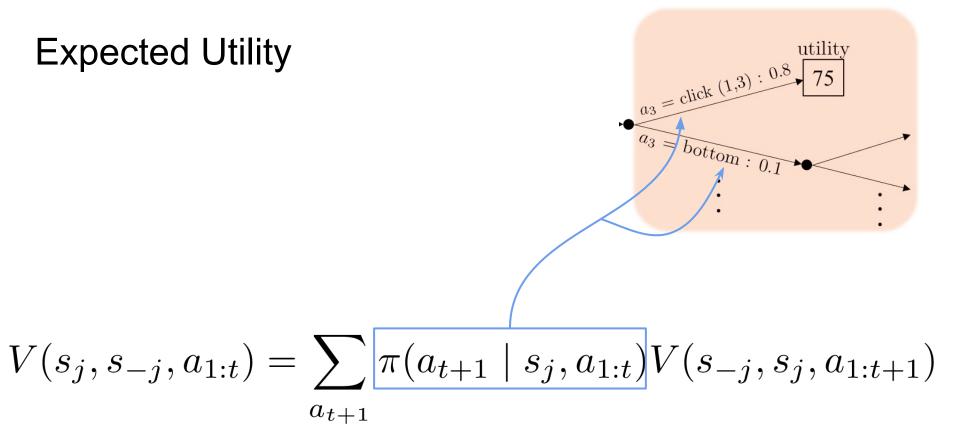
Expected Utility

If the game is over-

- A penalty for not reaching the goal
- A reward for reached the goal
- Penalty for each action



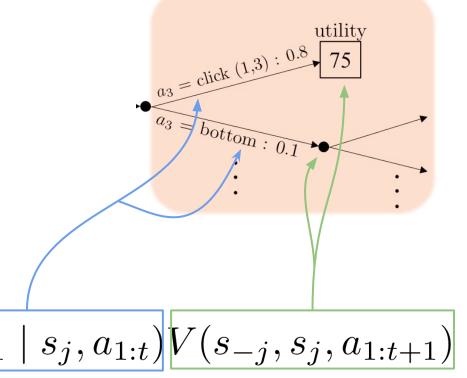
Expected Utility



Probability of choosing next action

 a_{t+1}

Expected Utility



$$V(s_j, s_{-j}, a_{1:t}) = \sum_{j} \pi(a_{t+1} \mid s_j, a_{1:t}) V(s_{-j}, s_j, a_{1:t+1})$$

Probability of choosing next action

 a_{t+1}

Utility of the games given all actions

Outline

- Pragmatics
- All three together

Purpose: Taking into account the partner's strategizing.

Inference: Recap

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \begin{cases} 1 & s_{-j} \text{ consistent with } a_{1:t} \\ 0 & o.w. \end{cases}$$

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \begin{cases} 1 & s_{-j} \text{ consistent with } a_{1:t} \\ 0 & o.w. \end{cases}$$

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \text{Probability of choosing } a_{1:t} \text{ in } s_{-j}$$

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \text{Probability of choosing } a_{1:t} \text{ in } s_{-j}$$

 $p(s_{-i} \mid s_i, a_{1:t}) \propto \pi(a_t \mid s_{-i}, a_{1:t-1}) p(s_{-i} \mid s_i, a_{1:t-2})$

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \text{Probability of choosing } a_{1:t} \text{ in } s_{-j}$$

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \pi(a_t \mid s_{-j}, a_{1:t-1}) p(s_{-j} \mid s_j, a_{1:t-2})$$

Probability of choosing the last action in that state

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \text{Probability of choosing } a_{1:t} \text{ in } s_{-j}$$

$$p(s_{-j} \mid s_j, a_{1:t}) \propto \pi(a_t \mid s_{-j}, a_{1:t-1}) p(s_{-j} \mid s_j, a_{1:t-2})$$
Probability of choosing the last

given the rest of actions

action in that state

Outline

All three together

Time (increase of context)

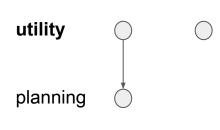
utility

planning (

Inference (

All three together: computing utility

Time (increase of context)

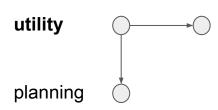


Inference (

$$V(s_j, s_{-j}, a_{1:t}) = \sum_{a_{t+1}} \pi(a_{t+1} \mid s_j, a_{1:t}) V(s_{-j}, s_j, a_{1:t+1})$$

All three together: computing utility

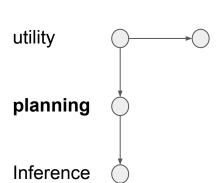
Time (increase of context)



Inference (

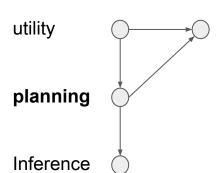
$$V(s_j, s_{-j}, a_{1:t}) = \sum_{a_{t+1}} \pi(a_{t+1} \mid s_j, a_{1:t}) V(s_{-j}, s_j, a_{1:t+1})$$

All three together: computing planning

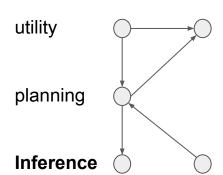


$$\pi(a_t \mid s_j, a_{1:t}) = \sum p(s_{-j} \mid s_j, a_{1:t-1}) V(s_{-j}, s_j, a_{1:t})$$

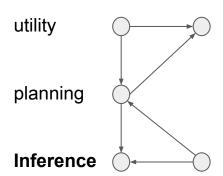
All three together: computing planning



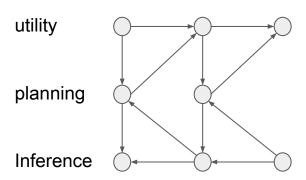
$$\pi(a_t \mid s_j, a_{1:t}) = \sum p(s_{-j} \mid s_j, a_{1:t-1}) V(s_{-j}, s_j, a_{1:t})$$

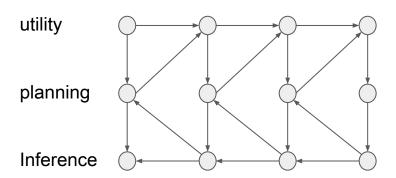


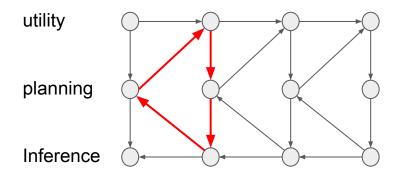
$$p(s_{-j} \mid s_j, a_{1:t}) \propto \pi(a_t \mid s_{-j}, a_{1:t-1}) p(s_{-j} \mid s_j, a_{1:t-2})$$



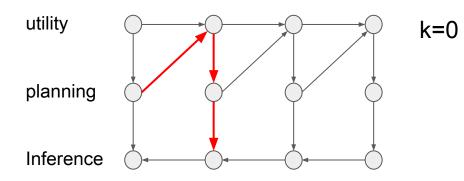
$$p(s_{-j} \mid s_j, a_{1:t}) \propto \pi(a_t \mid s_{-j}, a_{1:t-1}) p(s_{-j} \mid s_j, a_{1:t-2})$$





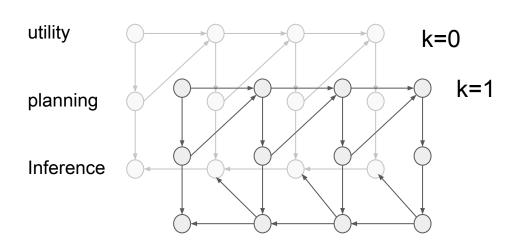


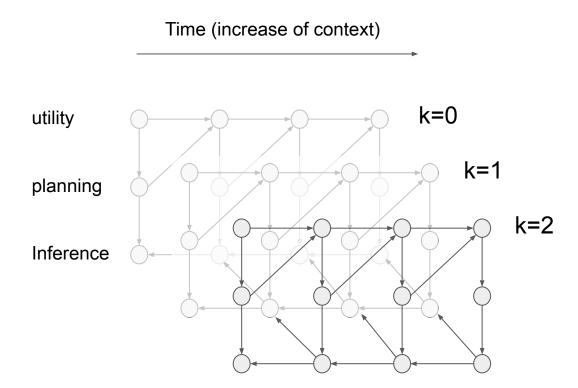
Time (increase of context)

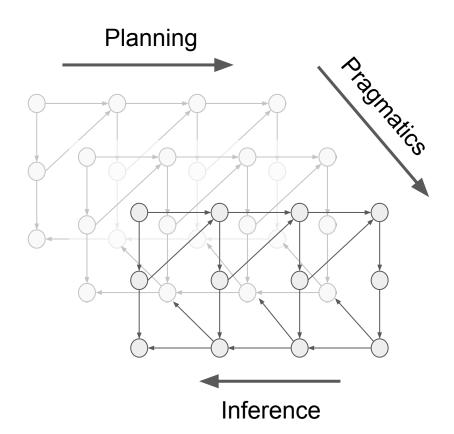


Basic inference

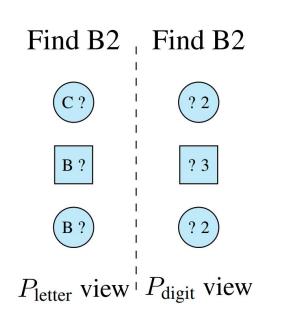
$$p(s_{-j} \mid s_j, a_{1:t}) \propto \begin{cases} 1 & s_{-j} \text{ consistent with } a_{1:t} \\ 0 & o.w. \end{cases}$$





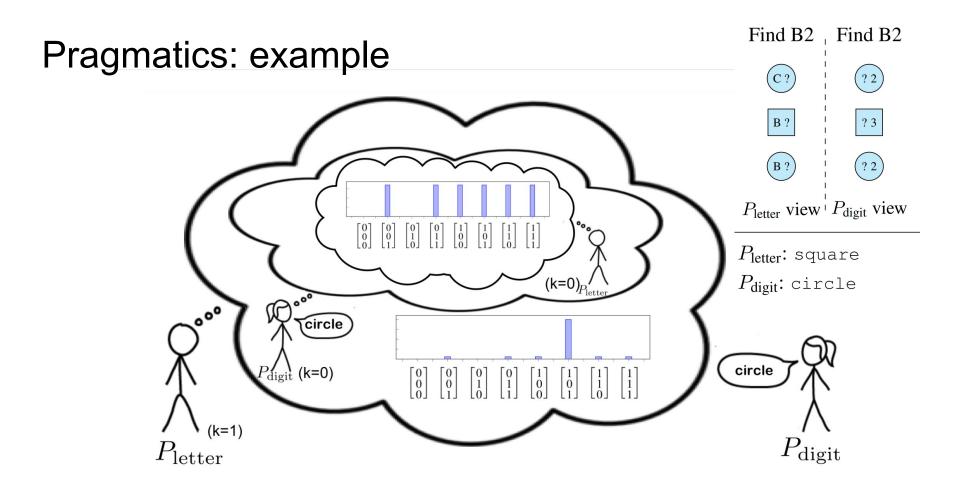


Pragmatics: example

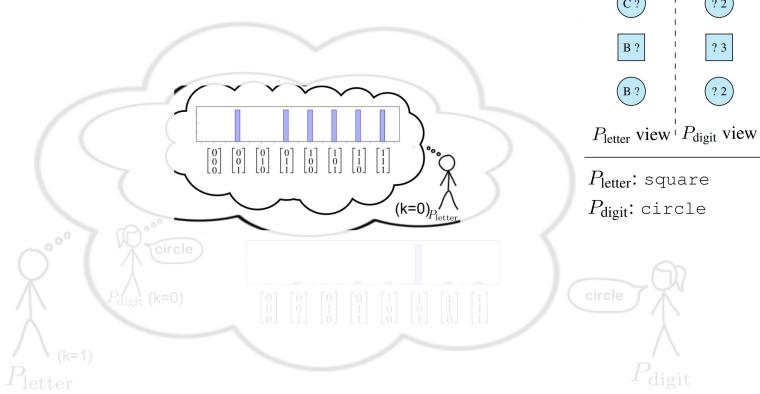


What is belief of P_{letter} about P_{digit} state?

 $P_{
m letter}$: square $P_{
m digit}$: circle



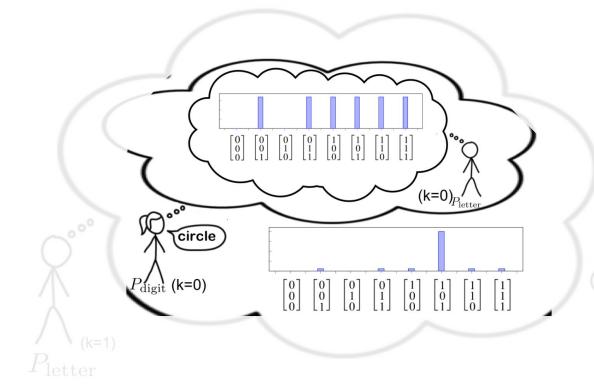
Pragmatics: example



Find B2 Find B2

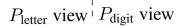
(?2)

Pragmatics: example



Find B2 Find B2

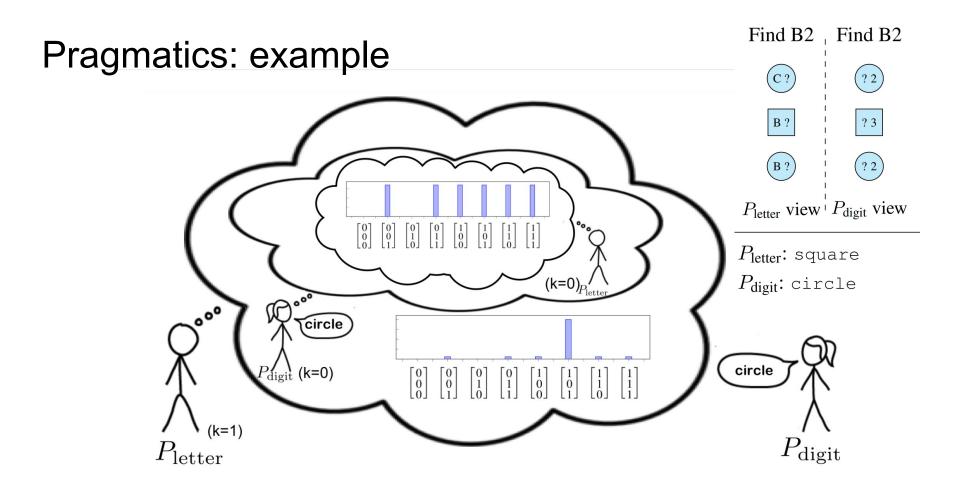
? 2

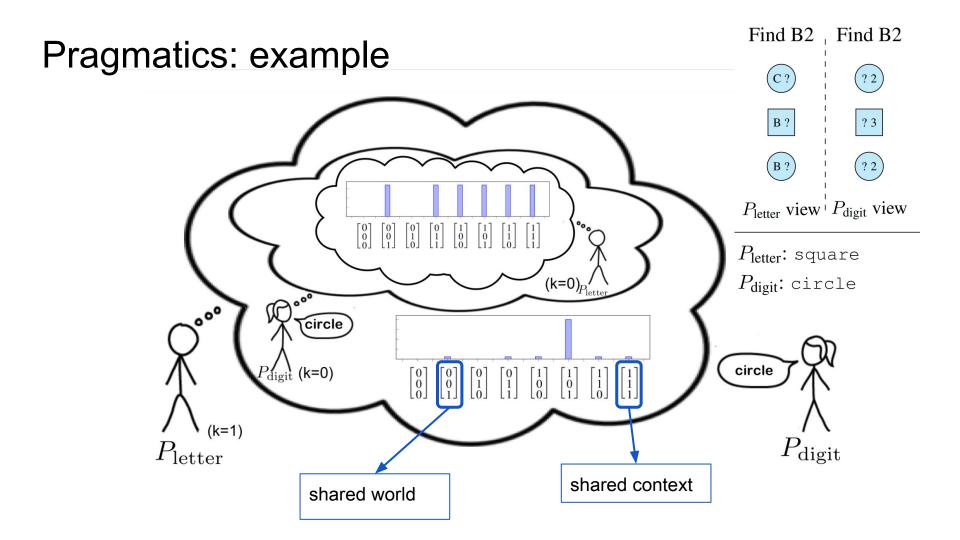


 P_{letter} : square

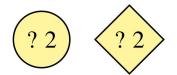
 $P_{
m digit}$: circle

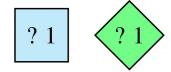
 $P_{
m digit}$





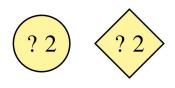
Find A1

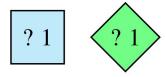




 P_{digit} view

Find A1





What does P_{digit} think about P_{letter} state?

 $P_{\rm digit}$ view

$$B(s_1, a_{1:t}) = \sum_{s=1}^{n} p(s_{-1} \mid s_1, a_{1:t}) s_{-1}$$

A matrix with 1 in any goal-consistent element

$$B(s_1, a_{1:t}) = \sum_{s=1}^{n} p(s_{-1} \mid s_1, a_{1:t}) s_{-1}$$

A matrix with 1 in any goal-consistent element

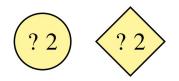
$$B(s_1, a_{1:t}) = \sum_{s=1} p(s_{-1} \mid s_1, a_{1:t}) s_{-1}$$

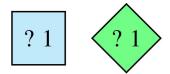
The probability of this entry having the goal letter

 $P_{
m digit}$ estimation of $P_{
m letter}$ state

 $\begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$

Find A1





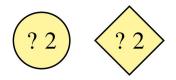
 $P_{\rm digit}$ view

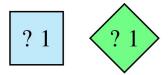
 P_{digit} estimation of P_{letter} state

$$P_{\text{letter}}$$
: right $\begin{bmatrix} 0.500 & 0.667 \\ 0.500 & 0.667 \end{bmatrix}$

$$P_{\text{letter}}$$
: right $\begin{bmatrix} 0.422 & 0.805 \\ 0.422 & 0.805 \end{bmatrix}$

Find A1





 $P_{\rm digit}$ view

P_{digit} estimation of P_{letter} state

 $P_{
m digit}$: bottom $\left[egin{array}{ccc} 0.500 & 0.667 \\ P_{
m letter}$: right & 0.500 & 0.667 \\ (k=0) & & \end{array}
ight]$

$$P_{ ext{digit}}$$
: bottom $\begin{bmatrix} 0.424 & 0.769 \\ P_{ ext{letter}}$: right $\begin{bmatrix} 0.423 & 0.940 \\ 0.423 & 0.940 \end{bmatrix}$

Outline

Outline

Randomly chooses one of the semantically valid actions

Randomly chooses one of the semantically valid actions

Greedy

Assigns higher probability to the actions that convey more information

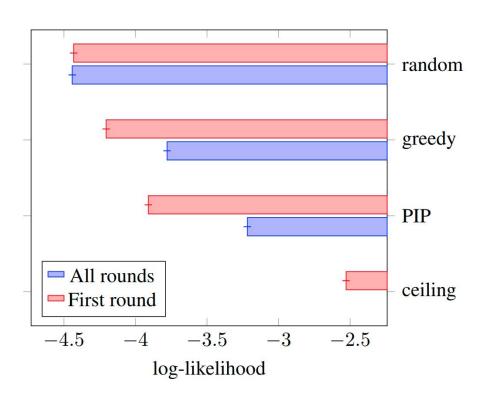
Randomly chooses one of the semantically valid actions

Greedy

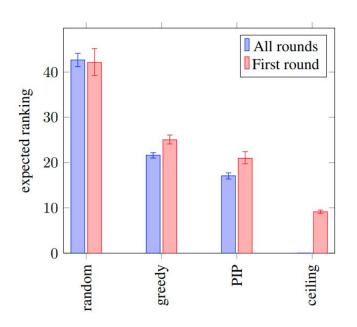
Assigns higher probability to the actions that convey more information

Computing probability of actions using PIP

Experiments: results



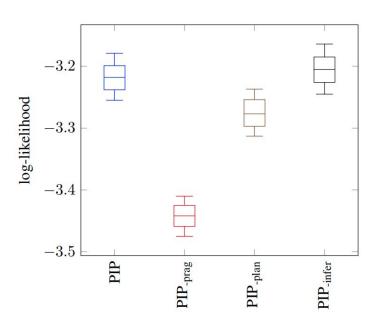
Experiments: results



Expected ranking of human messages

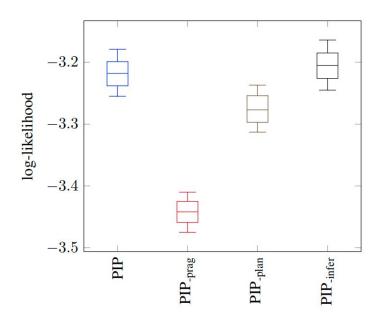
	PIP	PIP-prag	PIP-plan	PIP-infer
k (pragmatics)	1	0	1	1
f (planning)	2	2	1	2
b (inference)	∞	∞	∞	1

Experiments: results

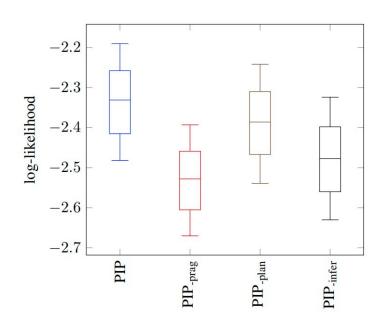


(a) Performance over all games and all rounds.

Experiments: results



(a) Performance over all games and all rounds.



(b) Performance over messages after round 3.

Conclusion

Dataset

We collect a dataset containing 1.7K games and 5k messages

Conclusion

Dataset We collect a dataset containing 1.7K games and 5k messages 1) Having all three (PIP) in one single unified model 2) Supports multiple round of communications

Conclusion

We collect a dataset containing 1.7K games and 5k **Dataset** messages Having all three (PIP) in one single unified model Model Supports multiple round of communications PIP is able to capture human behavior in InfoJigsaw Results A very simple, context-independent literal semantics can give rise via PIP to rich phenomena.

Markov Decision Process and their extension (e.g., Vogel et al. (2013)) Vogel et al. 2013 Hawkins et al. 2015 Potts et al. 2012 (Montague, 1973, Matuszek **Pragmatics** Cooperative principles of Grice (1975) can be realized (e.g., Franke (2009), Frank and Goodman (2012))

Inference

et al., 2012)

Model theoretic semantics

Planning