Maximum Weighted Loss Discrepancy

Fereshte Khani, Aditi Raghunathan, Percy Liang

Motivation

Focusing only on minimizing the average loss over a population might lead to large discrepancies between the losses across groups within the population. In this work, we study this inequality.

Setup

- individuals: z = (x, y), underlying distribution: p^*
- group: a measurable function $g: \mathcal{X} \times \mathcal{Y} \to \{0,1\}$, all groups: \mathcal{G}
- predictor: $h: \mathcal{X} \to \mathcal{Y}$
- bounded measurable loss function : $\ell(h,z)$
- population loss: $\mathbb{E}[\ell]$, group loss: $\mathbb{E}[\ell \mid g=1]$

Maximum Weighted Loss Discrepancy (MWLD)

$$\text{MWLD}(w, \ell, h) \stackrel{\text{def}}{=} \sup_{g \in \mathcal{G}} w(g) | \mathbb{E}[\ell \mid g = 1] - \mathbb{E}[\ell] |$$

Connection to Group Fairness

MWLD can be viewed as an upper bound for the loss of any group:

$$\mathbb{E}[\ell \mid g = 1] \le \mathbb{E}[\ell] + \frac{\text{MWLD}(w, \ell, h)}{w(g)}.$$

- Existing statistical notions of fairness can be viewed as enforcing small MWLD(w) for different weighting functions.
- Equalized opportunity: weighting function is 1 on sensitive groups (e.g., different races) and 0 on all other groups.

Connection to AI safety (Robustness)

MWLD can be viewed as an upper bound for the loss on a population with shifted demographics:

$$\mathbb{E}_{z \sim q}[\ell] \leq \mathbb{E}_{z \sim p^*}[\ell] + \text{MWLD}(w, \ell, h)$$

where $q(\cdot) \stackrel{\text{def}}{=} w(g)p^{\star}(\cdot \mid g=1) + (1-w(g))p^{\star}(\cdot \mid g=0)$.

- This is similar in spirit to distributionally robust optimization (DRO) using a max-norm metric.
- The difference is that the mixture coefficient is group-dependent.

Questions?

• For what weighting functions we can estimate MWLD(w)?

$$\forall \epsilon, \delta \in (0, \frac{1}{2}) : \mathbb{P}\left[|\mathrm{MWLD}(w) - \widehat{\mathrm{MWLD}}_n(w)| \ge \epsilon \right] \le \delta$$

- When can we compute $\widehat{\text{MWLD}}_n(w)$ efficiently?
- Is there any connection between MWLD(w) and other notions?

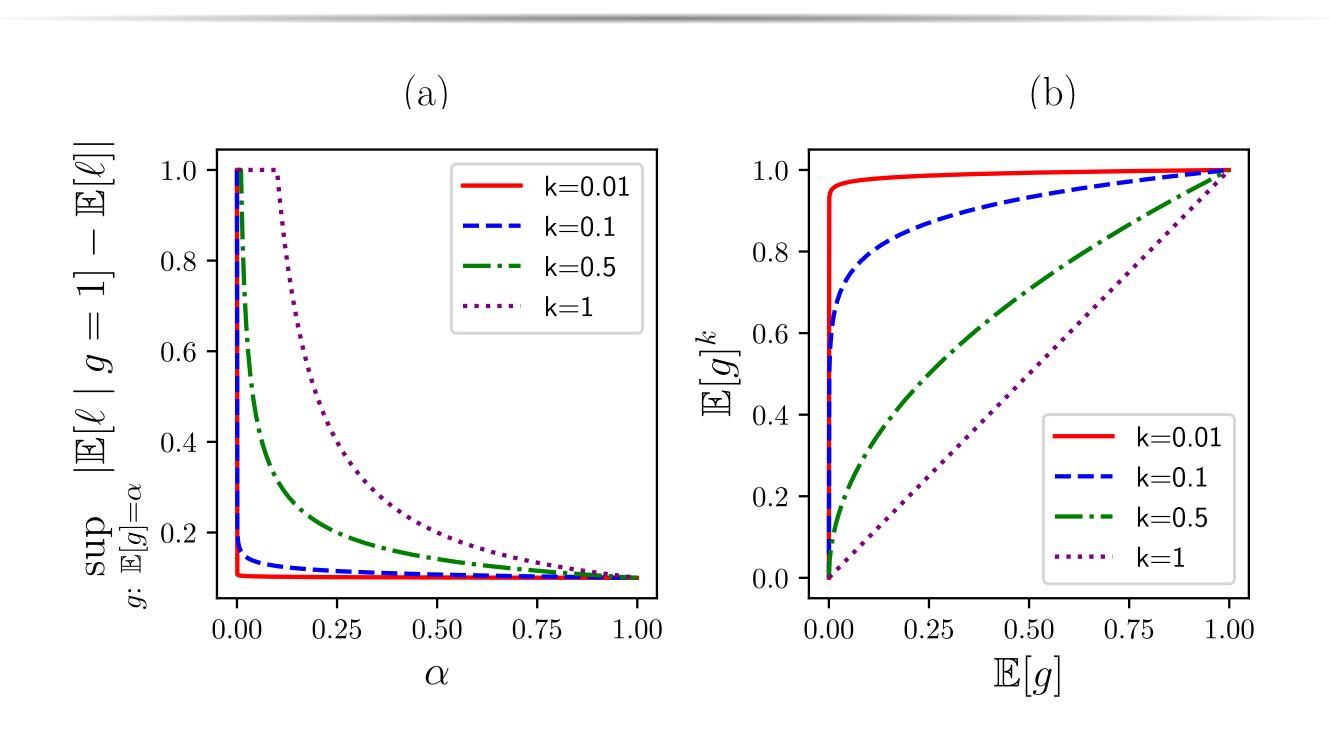
Proposition

Let $w^0(g) \stackrel{\text{def}}{=} \mathbb{I}[\mathbb{E}[g] > 0]$. For non-degenerate (ℓ, h) , it is impossible to estimate $\text{MWLD}(w^0, \ell, h)$.

Theorem

For $k \in (0,1]$, let $w^k \stackrel{\text{def}}{=} \mathbb{E}[g]^k$. Given $n \geq \frac{C \log(1/\delta)}{\epsilon^{2+\frac{2}{k}}}$ i.i.d. samples from p^* , we can estimate MWLD(w^k) efficiently.

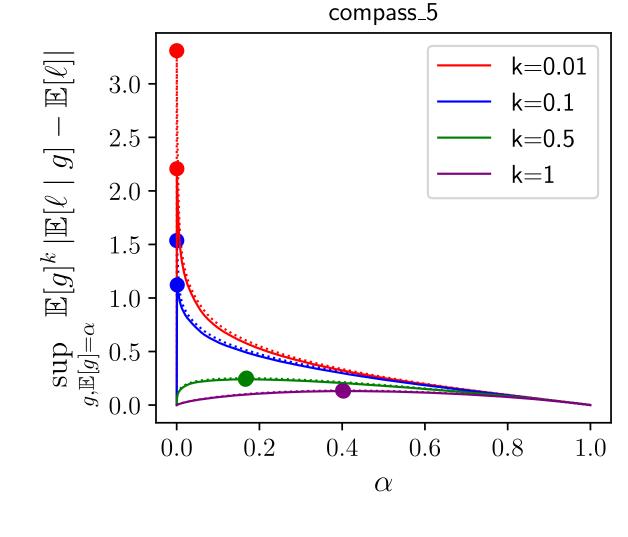
$$w^k(g) = \mathbb{E}[g]^k$$



The parameter k governs variation of (a) upper bound on loss discrepancy, (b) up-weighting factor across group sizes.

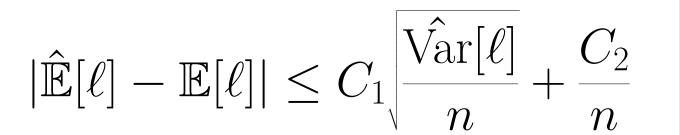
Estimating MWLD(w^k) on real world datasets

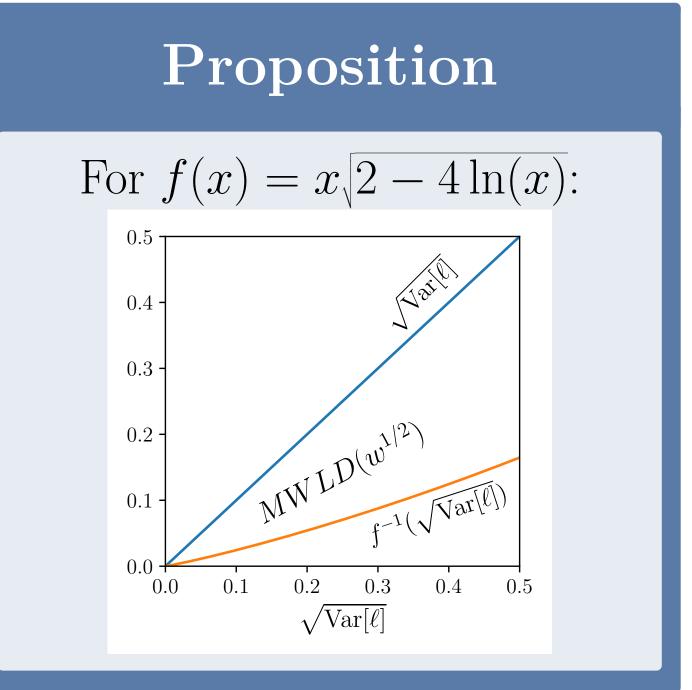
- Dots denote $\widehat{\text{MWLD}}(w^k)$.
- For smaller k, there is a bigger gap between values of $MWLD(w^k)$ corresponding to train (dashed lines) and test (solid lines) set.



Loss Variance

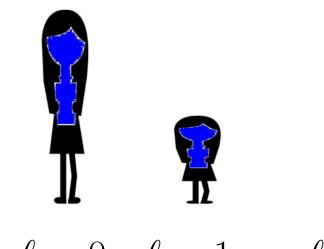
- Average individual discrepancy $\operatorname{Var}[\ell] = \mathbb{E}\left[\left(\ell(z) - \mathbb{E}[\ell]\right)^2\right]$
- Generalization bounds

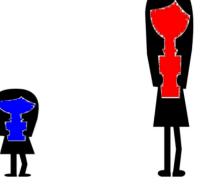


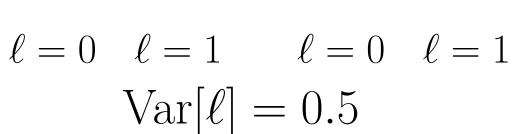


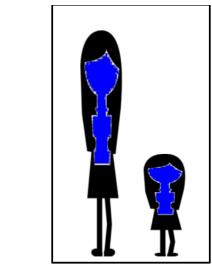
Coarse Loss Variance

Let A denote the sensitive attributes; e.g., A = [race, gender, ...]. $\operatorname{Var}\left[\mathbb{E}[\ell \mid A]\right] = \mathbb{E}\left[\left(\mathbb{E}[\ell \mid A] - \mathbb{E}[\ell]\right)^2\right].$

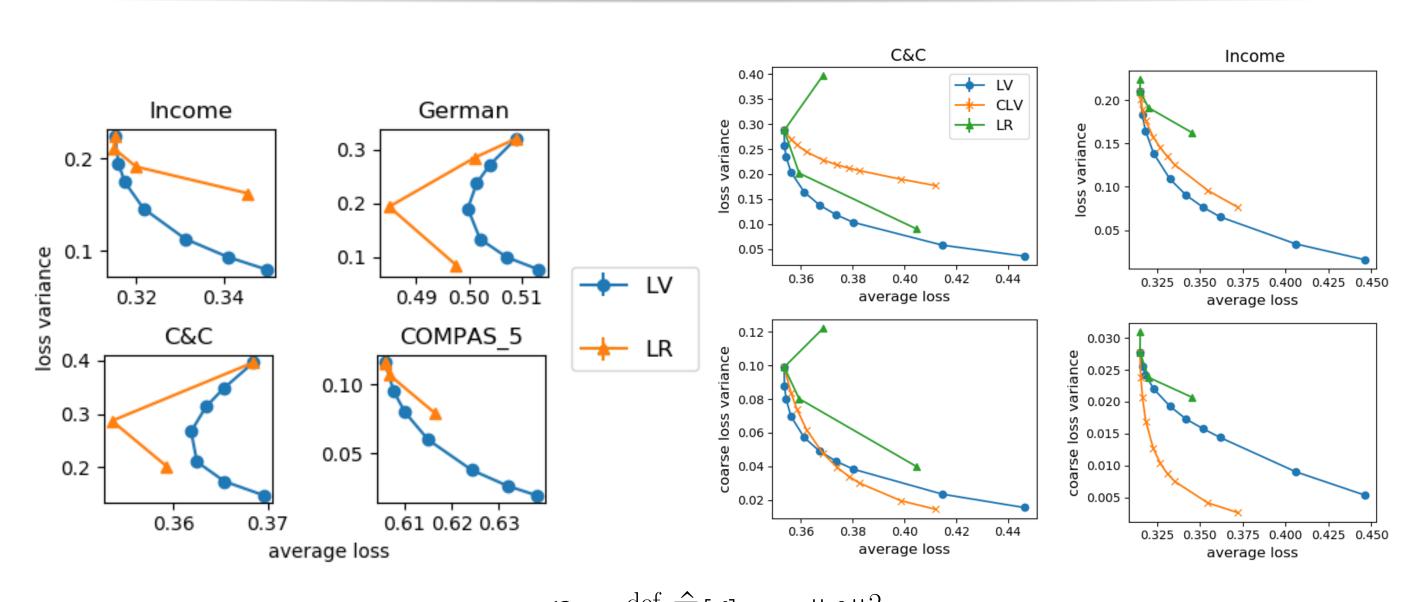








(Coarse) Loss Variance Regularization



$$\mathcal{O}_{LR} \stackrel{\text{def}}{=} \hat{\mathbb{E}}[\ell] + \eta \|\theta\|_{2}^{2}$$

$$\mathcal{O}_{LV} \stackrel{\text{def}}{=} \mathcal{O}_{LR} + \lambda \hat{\mathbb{E}}[\hat{\text{Var}}[\ell \mid y]] \qquad \mathcal{O}_{CLV} \stackrel{\text{def}}{=} \mathcal{O}_{LR} + \lambda \hat{\mathbb{E}}[\hat{\text{Var}}[\hat{\mathbb{E}}[\ell \mid A, y] \mid y]]$$

- We halve the loss variance with only a small drop in the average loss.
- In some cases, using loss variance as a regularizer simultaneously reduces the classification loss and loss variance.