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Motivation

Focusing only on minimizing the average loss over a
population might lead to large discrepancies between
the losses across groups within the population. In this
work, we study this inequality.

Setup

• individuals: z = (x, y), underlying distribution: p?

• group: a measurable function g : X × Y → {0, 1}, all groups: G
•predictor: h : X → Y
•bounded measurable loss function : `(h, z)
•population loss: E[`], group loss: E[` | g = 1]

Maximum Weighted Loss Discrepancy (MWLD)

MWLD (w, `, h) def= sup
g∈G

w(g) |E[` | g = 1]− E[`]|

Connection to Group Fairness

MWLD can be viewed as an upper bound for the loss of any group:

E[` | g = 1] ≤ E[`] + MWLD(w, `, h)
w(g)

.

•Existing statistical notions of fairness can be viewed as enforcing
small MWLD(w) for different weighting functions.

• Equalized opportunity: weighting function is 1 on sensitive
groups (e.g., different races) and 0 on all other groups.

Connection to AI safety (Robustness)

MWLD can be viewed as an upper bound for the loss on a population
with shifted demographics:

Ez∼q[`] ≤ Ez∼p?[`] + MWLD(w, `, h)
where q(·) def= w(g)p?(· | g = 1) + (1− w(g))p?(· | g = 0).
•This is similar in spirit to distributionally robust optimization
(DRO) using a max-norm metric.

•The difference is that the mixture coefficient is group-dependent.

Questions?

•For what weighting functions we can estimate MWLD(w)?

∀ε, δ ∈ (0, 1
2
) : P


∣∣∣∣∣∣∣∣∣MWLD(w)− M̂WLDn(w)

∣∣∣∣∣∣∣∣∣ ≥ ε
 ≤ δ

•When can we compute M̂WLDn(w) efficiently?
• Is there any connection between MWLD(w) and other notions?

Proposition

Let w0(g) def= I[E[g] > 0]. For non-degenerate (`, h), it is impossible
to estimate MWLD(w0, `, h).

Theorem

For k ∈ (0, 1], let wk def= E[g]k. Given n ≥ C log(1/δ)
ε2+2

k
i.i.d. samples

from p?, we can estimate MWLD(wk) efficiently.

wk(g) = E[g]k
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The parameter k governs variation of (a) upper bound on loss discrep-
ancy, (b) up-weighting factor across group sizes.

Estimating MWLD(wk) on real
world datasets
•Dots denote M̂WLD(wk).
•For smaller k, there is a bigger gap
between values of M̂WLD(wk)
corresponding to train (dashed lines)
and test (solid lines) set. 0.0 0.2 0.4 0.6 0.8 1.0
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Loss Variance

•Average individual discrepancy
Var[`] = E

(`(z)− E[`])2

•Generalization bounds

|Ê[`]− E[`]| ≤ C1

√√√√√√√√√√√√√
V̂ar[`]
n

+ C2

n

Proposition

For f (x) = x
√√√√√2− 4 ln(x):
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Coarse Loss Variance

Let A denote the sensitive attributes; e.g., A = [race, gender, . . . ].
Var [E[` | A]] = E

(E[` | A]− E[`])2 .

` = 0 ` = 1 ` = 0 ` = 1
Var[`] = 0.5

E[` | A = [blue]] E[` | A = [red]]
Var[E[` | A]] = 0

(Coarse) Loss Variance Regularization

OLR def= Ê[`] + η‖θ‖2
2

OLV def= OLR + λÊ[V̂ar[` | y]] OCLV def= OLR + λÊ[V̂ar[Ê[` | A, y] | y]]

•We halve the loss variance with only a small drop in the average loss.
• In some cases, using loss variance as a regularizer simultaneously
reduces the classification loss and loss variance.


