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- Standard learning procedures work well in average
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Motivation

- Standard learning procedures work well in average

- Performance is different across groups
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Motivation

- Standard learning procedures work well in average

- Performance is different across groups

- Especially problematic for critical applications and protected groups

Search Work  Education Profile Candidate Xing

query experience experience views ranking
Brand Strategist 146 57 12992 male 1
Brand Strategist 327 0 4715 female 2
Brand Strategist 502 74 6978 male 3
Brand Strategist 444 56 1504 female 4
Brand Strategist 139 25 63 male 5
Brand Strategist 110 65 3479 female 6
Brand Strategist 12 73 846 male 7
Brand Strategist 99 41 3019 male 8
Brand Strategist 42 51 1359 female 9
Brand Strategist 220 102 17186  female 10

WHITE  AFRICAN AMERICAN

Didn’t Re-Offend 23.5% 44.9%
Did Re-Offend 47.7% 28.0%
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Why do such loss discrepancies exist?
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- Training data is biased Tike me.
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Previous work

Training data is biased
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Minority/generalization issues
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From soft classifiers to hard decisions
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Previous work
Training data is biased

(Rothwell, 2014; Madras et al., 2019)

Groups have different true functions

(Dwork et al., 2018)

Minority/generalization issues

(Chen et al., 2018)

From soft classifiers to hard decisions

(Canetti et al., 2019; Corbett-Davies and Goel, 2018)

Groups have different amount of noise

(Corbett-Davies and Goel, 2018; Corbett-Davies et al., 2017)

This work

No biased training data

Same true function for both groups

Infinite data

Linear regression setup

Same amount of noise
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Same true function

Even under the most favorable condition { Infinite data there is still loss discrepancy.
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No biased training data
Same true function

Even under the most favorable condition { Infinite data there is still loss discrepancy.
Linear regression setup

Same amount of noise

Main Takeaway J

Same amount of feature noise on all individuals affects groups differently.
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Setup

Feature noise induces loss discrepancy
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Background: Feature noise

—

in Linear Regression

(2,9) - Setup:

z~N(11) z~P,, y=B"z+0a, x=z4u

y==2 E[u] =0 and v is independent of y and z

x~N(z1)

(z,y) - Method:

J=3+3 9=pATx+ @&, Leastsquares estimator
- Analysis:

Let A denotes noise to signal ratio

AN=E (X, +X,)7 M,
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Setup

e group membership g € {0,1}

true (latent) features z € R” ° observed features x = o(z, g, u)

y= h(O(Z,g, U))

prediction target y € R”

loss ¢(y,y): impact of the predictor for an individual
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Qutline: noise induces loss discrepancy

loss discrepancy .
observation function '
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Statistical Loss Discrepancy!
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Definition (Statistical Loss Discrepancy (SLD))

For a predictor h, observation function o, and loss function /¢, statistical loss discrepancy is the
difference between the expected loss between two groups:

SLD(h,0,£) = [E[¢ | g = 1] - E[ | g = 0]

l(Hardt et al., 2016; Agarwal et al., 2018; Woodworth et al., 2017; Pleiss et al., 2017; Khani et al., 2019)



Counterfactual Loss Discrepancy 2
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(Kusner et al., 2017; Chiappa, 2019; Loftu al., 2018; Nabi and Shpitser, 2018; Kilbertus et al., 2017)



Counterfactual Loss Discrepancy 2
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Definition (Counterfactual Loss Discrepancy (CLD))

For a predictor h, observation function o, and loss function ¢, counterfactual loss discrepancy is
the expected difference between the loss of an individual and its counterfactual counterpart:

CLD(h,0,¢) =E[|Lo — L1]],

where Ly = E[l(h(o(z,8’, u)),y)|z].

2(Kusner et al., 2017; Chiappa, 2019; Loftus et al., 2018; Nabi and Shpitser, 2018; Kilbertus et al., 2017)




Loss functions

- Residual: measures the amount of underestimation.
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Loss functions

- Residual: measures the amount of underestimation.

Ay def ~
bes(y,9) = y — ¥

- Squared error: measures the overall performance.

~y def ~
lsq(y,9) = (v = 9)?
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Independent noise without group information
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Independent noise without group information
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Independent noise without group information
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Independent noise without group information

N — y==z - Setup:

61 L8 6

N 2~ N(1,0.5) z~Pr y=pz+a
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y= BAX + &, Least squares estimator

- Analysis:

CLD(0_g, tres) =0



Independent noise without group information

81 Yz - Important factors in statistical loss
67 j=fatd discrepancy (SLD)

4 2~ N(1,0.5) 1. noise ratio

24

04 ZNNH\N A= (Zz+zu)_1zu

“7 2. difference in means

I Ap=Elz|g=1]-Elz|g=0]
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Independent noise with group information
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Independent noise with group information
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Independent noise with group information
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Independent noise with group information
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Independent noise with group information

Important factors in counterfactual loss
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Independent noise with group information

Important factors in counterfactual loss
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v’ Setup
v" Feature noise induces loss discrepancy

- Experiments



Datasets

name #trecords #features target features example group Plg=1] Ap, Aa‘f, [[Apxll2  |AZk|F
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Experiments ({yes)
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In the paper but not in this talk

—-25 00 25 50 75 0 2 4 6

different distributions = high loss discrepancy =~ Same distributions = no loss discrepancy

We studied theoretically and experimentally the time it takes for a classifier to adapt
to this shift.



Noise causes attenuation bias Noise induces loss discrepancy
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Noise causes attenuation bias
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Thank You!
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