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Motivation

- Standard learning procedures work well in average

- Performance is different across groups

- Especially problematic for critical applications and protected groups
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Why do such loss discrepancies exist?
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Previous work

- Training data is biased
(Rothwell, 2014; Madras et al., 2019)

- Groups have different true functions
(Dwork et al., 2018)

- Minority/generalization issues
(Chen et al., 2018)

- From soft classifiers to hard decisions
(Canetti et al., 2019; Corbett-Davies and Goel, 2018)

- Groups have different amount of noise
(Corbett-Davies and Goel, 2018; Corbett-Davies et al., 2017)
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(Dwork et al., 2018)

- Minority/generalization issues
(Chen et al., 2018)

- From soft classifiers to hard decisions
(Canetti et al., 2019; Corbett-Davies and Goel, 2018)

- Groups have different amount of noise
(Corbett-Davies and Goel, 2018; Corbett-Davies et al., 2017)

This work

- No biased training data

- Same true function for both groups

- Infinite data

- Linear regression setup

- Same amount of noise
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Even under the most favorable condition



No biased training data
Same true function
Infinite data
Linear regression setup
Same amount of noise


there is still loss discrepancy.

Main Takeaway
Same amount of feature noise on all individuals affects groups differently.
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Outline

- Background on feature noise in linear regression

- Setup

- Feature noise induces loss discrepancy

- Experiments

7 / 25



Background: Feature noise in Linear Regression

-4 -2 0 2 4 6
-4

-2

0

2

4

6 (z, y)
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y = z

- Setup:
z ∼ Pz , y = β>z + α,

- Method:
ŷ = β̂>x + α̂, Least squares estimator

- Analysis:

Let Λ denotes noise to signal ratio

Λ
def
= (Σz + Σu)−1Σu

1
2

β̂ = β − Λβ
1
2

α̂ = α + (Λβ)>E[z ]
1
2
aaaaaaaaaa

8 / 25



Background: Feature noise in Linear Regression

-4 -2 0 2 4 6
-4

-2

0

2

4

6 (z, y)

z ∼ N (1, 1)

y = z

x ∼ N (z, 1)

(x, y)

- Setup:
z ∼ Pz , y = β>z + α,
E[u] = 0 and u is independent of y and z

- Method:
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ŷ = 0x + 1

- Setup:
z ∼ Pz , y = β>z + α, x = z + u
E[u] = 0 and u is independent of y and z

- Method:
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ŷ = 1
2x + 1

2

- Setup:
z ∼ Pz , y = β>z + α, x = z + u
E[u] = 0 and u is independent of y and z

- Method:
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Outline

X Background on feature noise in linear regression

- Setup

- Feature noise induces loss discrepancy

- Experiments
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Setup

ztrue (latent) features z ∈ Rn

yprediction target y ∈ Rn

g group membership g ∈ {0, 1}

x observed features x = o(z , g , u)

ŷ ŷ = h(o(z , g , u))

loss `(ŷ , y): impact of the predictor for an individual
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Outline: noise induces loss discrepancy
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Statistical Loss Discrepancy1

Definition (Statistical Loss Discrepancy (SLD))
For a predictor h, observation function o, and loss function `, statistical loss discrepancy is the
difference between the expected loss between two groups:

SLD(h, o, `) = |E[` | g = 1]− E[` | g = 0]|

1(Hardt et al., 2016; Agarwal et al., 2018; Woodworth et al., 2017; Pleiss et al., 2017; Khani et al., 2019)
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Counterfactual Loss Discrepancy 2

Definition (Counterfactual Loss Discrepancy (CLD))

For a predictor h, observation function o, and loss function `, counterfactual loss discrepancy is
the expected difference between the loss of an individual and its counterfactual counterpart:

CLD(h, o, `) = E [|L0 − L1|] ,

where Lg ′ = E[`(h(o(z , g ′, u)), y)|z ].

2(Kusner et al., 2017; Chiappa, 2019; Loftus et al., 2018; Nabi and Shpitser, 2018; Kilbertus et al., 2017)
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Loss functions

- Residual: measures the amount of underestimation.

`res(y , ŷ)
def
= y − ŷ

- Squared error: measures the overall performance.

`sq(y , ŷ)
def
= (y − ŷ)2
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Summary

hhhhhhhhhhhhhhhhhhhobservation function

loss discrepancy
CLD SLD

? ? ?

? ? ?
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Independent noise without group information

- Setup:

z ∼ Pz , y = β>z + α

- Method:

ŷ = β̂x + α̂, Least squares estimator

- Analysis:

CLD(o−g, `res) = 0

- Important factors in statistical loss
discrepancy (SLD)
1. noise ratio

Λ = (Σz + Σu)−1Σu

2. difference in means

∆µ = E[z | g = 1]− E[z | g = 0]
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Summary

hhhhhhhhhhhhhhhhhhhobservation function

loss discrepancy
CLD SLD

o−g = z + u 0 |(Λβ)>∆µz |

? ? ?
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Independent noise with group information

- Setup:
z ∼ Pz , y = β>z + α

- Method:
ŷ = β̂x + α̂, Least squares estimator

- Analysis:

SLD(o+g, `res) = 0

Important factors in counterfactual loss
discrepancy (CLD)
1. noise ratio

Λ′ = (Σz|g + Σu)−1Σu

2. difference in means

∆µ = E[z | g = 1]− E[z | g = 0]
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Independent noise with group information
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Independent noise with group information
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Summary

hhhhhhhhhhhhhhhhhhhobservation function

loss discrepancy
CLD SLD

o−g = z + u 0 |(Λβ)>∆µz |

o+g = [z + u, g ] |(Λ′β)>∆µz | 0
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Outline

X Background on feature noise in linear regression

X Setup

X Feature noise induces loss discrepancy

- Experiments
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Datasets

name #records #features target features example group P[g = 1] ∆µy ∆σ2
y ‖∆µx‖2 ‖∆Σx‖F

C&C 1994 91 crime rate #homeless, average income, . . . race 0.50 1.10 0.96 5.62 12.75

law 20798 25 final GPA undergraduate GPA, LSAT, . . .
race 0.86 0.87 0.01 2.24 2.79
sex 0.56 0.005 0.04 0.42 0.51

students 649 33 final grade study time, #absences, . . . sex 0.59 0.26 0.12 1.40 2.26
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Experiments (`res)
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In the paper but not in this talk
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Same distributions =⇒ no loss discrepancy

We studied theoretically and experimentally the time it takes for a classifier to adapt
to this shift.
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Noise causes attenuation bias

SLD CLD

Noise induces loss discrepancy

CLD SLD

`res
o−g : 0 o−g : |(Λβ)>∆µz |
o+g : |(Λ′β)>∆µz | o+g : 0

25 / 25



Noise causes attenuation bias

SLD CLD

Noise induces loss discrepancy

CLD SLD

`res
o−g : 0 o−g : |(Λβ)>∆µz |
o+g : |(Λ′β)>∆µz | o+g : 0

Thank You!
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