
Fairness via Loss Variance 
Regularization

Fereshte Khani Aditi Raghunathan Percy Liang









Calders et al. [2009]

Sensitive attributes

A = [Height, Color]

short tall blue red



Calders et al. [2009]

Sensitive attributes

A = [Height, Color]

short tall blue red



Calders et al. [2009]

short tall blue red

Sensitive attributes

A = [Height, Color]



0 0

0 0

1 1

1 1Kearns et al. [2018]



0 0

0 0

1 1

1 1

Loss blue: 0.5 Loss red: 0.5

Kearns et al. [2018]



0 0

0 0

1 1

1 1

Loss blue: 0.5 Loss red: 0.5

Loss short: 0.5

Loss tall: 0.5

Kearns et al. [2018]



0 0

0 0

1 1

1 1

Loss blue: 0.5 Loss red: 0.5

Loss short: 0.5

Loss tall: 0.5

Kearns et al. [2018]



Kearns et al. [2018]

Short Tall Blue Red

Red tall Blue tall Short red Short blue



Kearns et al. [2018]

Short Tall Blue Red

Red tall Blue tall Short red Short blue



Kearns et al. [2018]

Short Tall Blue Red

Red tall Blue tall Short red Short blue

Smaller groups 
can have higher 
loss



Hashimoto et al. 2018

No sensitive attributes 
is available
A = [?]



Hashimoto et al. 2018

No sensitive attributes 
is available
A = [?]

All groups 
larger than 



Group loss population lossGroup weight

All possible groups on population

Maximum weighted loss discrepancy



Normal



Group fairnessNormal

Hardt et al. 2016



Subgroup 
fairness

Group fairnessNormal

kearns et al. 2018Hardt et al. 2016



Large-group 
fairness

Subgroup 
fairness

Group fairnessNormal

Hashimoto et al. 2018kearns et al. 2018Hardt et al. 2016



Interpretation

U(w) = max
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Note. If w(g) = 0 then E[` | g ] can be arbitrary even when U(w) is small.
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Definition (Auditor)

Given any ε, δ ∈ (0, 12) an auditor returns an estimate γ for U(w) such that:

P [|U(w)− γ| ≤ ε] ≥ 1− δ

Theorem
Fix a bounded measurable loss. There is an auditor when w(g) = E[g ]k for k ∈ (0, 1)
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data points.

Proof idea.

I P
[∣∣∣U(w)− Û(w)

∣∣∣ ≤ ε
]
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I We can compute Û(w) efficiently.
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D̂(ĝ) uniformly converges to D(ĝ)

Lemma
Let D̂(g) = Ê[g ]k

∣∣∣Ê[` | g ]− Ê[`]
∣∣∣. Given n data points, let ĝ be a group with
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Assume Ê[`] = 0

and Ê[` | ĝ ] ≤ Ê[`], then we can represent ĝ :
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ĝ
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g∈G
|D(ĝ)− D̂(ĝ)| = sup

u∈[0,1]
|D(ĝu)− D̂(ĝu)|
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∣∣∣Ê[` | g ]− Ê[`]
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|D(ĝu)− D̂(ĝu)|
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