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Maximum weighted loss discrepancy

Group weight Group loss population loss

U(w) = maxw(g) |E[¢| g = 1] - E[{]

All possible groups on population
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Interpretation

U(w) = maxw(g)|Ell | g] - E[/]

For any g, we have:

E[ﬁ]—%smm]sww%

Note. If w(g) =0 then E[/ | g] can be arbitrary even when U(w) is small.
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Definition (Auditor)

Given any €,6 € (0,3) an auditor returns an estimate ~y for U(w) such that:

PlUw) —7[<e]>1-46

Proposition
There is no auditor for w(g) = I[E[g] > 0]

Proof idea.

» Let P; be any distribution such that U(w) < % for Py.

» Construct P> such that z ~ P; with probability 1 —n and z = z5 and z = z; each
with probability 7 = U(w) > 1 for P,

» Choose a small n =1 — V2.



Definition (Auditor)

Given any €,6 € (0,3) an auditor returns an estimate ~y for U(w) such that:

PlUw) —7[<e]>1-46

Proposition
There is no auditor for w(g) = I[E[g] > 0]

Take aways.
If we want to have positive weights for all groups then smaller groups should have

smaller weights L]
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Definition (Auditor)

Given any €,6 € (0,3) an auditor returns an estimate ~y for U(w) such that:

PlUw) —7[<e]>1-46

Theorem
Fix a bounded measurable loss. There is an auditor when w(g) = E[g]* for k € (0,1)
which needs n = O (M) data points.

1
Tx

Take aways.

For small k, we need more examples for convergence! O



Definition (Auditor)

Given any €,6 € (0,3) an auditor returns an estimate ~y for U(w) such that:

PlUw) —7[<e]>1-46

Theorem

Fix a bounded measurable loss. There is an auditor when w(g) = E[g]* for k € (0,1)

which needs n = O (%) data points.
ek

Proof idea.
> P [[uw) - Ow)| <] 215

» We can compute U(w) efficiently.
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ﬁ(é) uniformly converges to D(g)

Lemma
Let D(g) = E[g]* |E[¢ | g] - IE[K]‘ Given n data points, let g be a group with

maximum empirical weighted loss discrepancy, § = arg max 5(g) Assume IAE[E] =0

39
and E[¢ | g] < [E[¢], then we can represent §:

U <l <o KUy <1 - < Ay

VQ>< |/\

gu = {all points with loss less than u}

sup |D(g) — D(g)| = sup |D(&s) — D(gu)|
geg uelo,1]
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Hoeffding’s inequality
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~~ ~~ n
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Bennett'’s inequality
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Bennett’s inequality

G Var[/] N G
n

E[] - EI
~~ —~

training loss  population loss

[Bennett, 1962]

[Maurer and Pontil, 2009] == Empirical Bernstein Bounds and Sample Variance
Penalization

[Mnih et al., 2008]

[Audibert et al., 2009]

[Shivaswamy and Jebara, 2010]

[Namkoong and Duchi, 2017] = Variance-based regularization with convex objectives
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Uw) for w(g) = E[g]% <— Loss variance
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law of total variance

g=0

Var[E[/¢ | g]] < Var[{]
E[g](E[( | g = 1] — E[])* + E[1 - g](E[¢ | g = 0] — E[¢]) < Var[(]
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law of total variance

Var[E[¢ | g]] < Var[{]
E[g](E[ | g = 1] — E[])* + E[1 - g](E[¢ | g = 0] — E[£])* < Var[(]
VElg] [E[¢ | g = 1] — E[{]| < /Var[{]
——

weighted loss discrepancy

Proposition
Let wi(g) = E[g]2 then U(wz) < \/Varl(].
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Proposition

Let wh(g) = Elg]} then /Varll] < U(w})y/2 — 4In(U(w}))

Proof idea.

1
> P[0 > u] < Y2

u

» Var[l] = [uP[{ > u]
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Maximum weighted loss discrepancy, U(w)

Impossible to audit U(w) for w(g) = I[E[g] > 0]

Possible to audit U(w) for w(g) = E[g]k No prior

Test error information

0
©
O

Loss variance
\

Average individual discrepancy

1
2 <«— Loss variance

U(w) for w(g) = El[g]

—



Handling prior information

A is given
A = [height, color]
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U(w) = maxw(g)|E[¢ | g = 1] - E[(]

w(g)={50 gi@ Rl
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All possible groups on A = [height, color]
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Coarse loss variance

U(w) for w(g) = {Ig[g]a 7 6@ = Var[E[{ | A]]

0.wW.

All possible groups on A = [height, color]
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o Maximum weighted loss discrepancy, U(w)

. Questions?
le Impossible to audit U(w) for w(g) = ]I[E[g] > 0]

9 Possible to audit Uw) for w (g) = IE[g]*

Test error
Loss variance /
\ Average individual discrepancy

uw) for w(g) = E[g]% e

4

'9 U(w) for w(g) = {E[gﬁ gc Ga
|

&

Loss variance

<«—— Coarse loss variance
0 0. W.

What should be the weighting function?
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